
Università degli Studi di Milano - Bicocca

Scuola di Scienze

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di Laurea Magistrale in Informatica

Free-energy calculations using Graph
Convolutional Networks

Relatore: Prof. Vittorio Limongelli

Tesi di Laurea Magistrale di:
Demetrio Carrara
Matricola 807894

Anno Accademico 2019-2020

Contents

1 Introduction 3
1.1 Importance and significance . 3
1.2 Background . 4
1.3 Preparatory notions . 5

2 Molecular Dynamics 9
2.1 Molecular Dynamics fundamentals . 10

2.1.1 Preparing the simulation . 12
2.1.2 The production run . 15

2.2 Free energy . 15
2.3 MetaDynamics . 16

2.3.1 Well-tempered MetaDynamics 18
2.4 Alanine Dipeptide . 19

3 Introduction to neural networks 21
3.1 Neural network fundamentals . 21

3.1.1 Activation functions . 22
3.1.2 Loss functions . 22
3.1.3 Learning problem . 24
3.1.4 Optimization methods . 24
3.1.5 Classification and prediction tasks 25
3.1.6 Overfitting problem . 26

3.2 Deep learning . 27
3.2.1 Convolutional Neural Networks 27

4 Geometric Deep Learning 29
4.1 Introduction to Graph Neural Networks 29
4.2 Graph convolutional layers . 32

4.2.1 Spectral-based methods . 32

1

4.2.2 Spatial-based methods . 33
4.3 Graph pooling layers . 36

4.3.1 Graph readout layers . 39

5 Dataset 41
5.1 Pipeline description . 41
5.2 Creating Alanine Dipeptide structure 42

5.2.1 Protein Data Bank file format 43
5.3 Well-tempered MetaDynamics simulation 44

5.3.1 Alanine Dipeptide in vacuum 44
5.4 Dataset creation . 51

6 Methods 54
6.1 Molecular abstract representation . 55

6.1.1 Hypergraph . 56
6.1.2 Dihedrals overlap graph . 57
6.1.3 Simplified dihedrals overlap graph 58
6.1.4 Angular value encoding . 60

6.2 Model architectures . 60
6.2.1 Flatten model . 63
6.2.2 Convolutions and pooling model 64

6.3 Baseline models . 64

7 Results and discussions 66
7.1 Alanine dipeptide FES prediction . 67

7.1.1 C&P final poolings . 68
7.1.2 Different number of training frames 69

7.2 Comparison among different angular representations 70
7.3 Comparison among different molecule representations 71
7.4 Shuffling the nodes . 72
7.5 Prediction on unseen minima . 72
7.6 Prediction on both the representations 73

8 Conclusions and future work 75
8.1 Future work . 76

2

Chapter 1

Introduction

1.1 Importance and significance

Understanding the complex and intertwined net of biologically relevant mechanisms
is the holy grail of biology and biochemistry. The more we dig up to unveil new
important pathways, the more difficult understanding the entire picture becomes,
meaning that nature has yet a lot to teach us in this regard. In the last decades,
computational scientists greatly contributed in extending our knowledge by providing
information otherwise difficult or outright impossible to obtain by in vitro assays
[1]. Nonetheless, the amount of data produced every year by the different -omics
sciences (e.g., genomics, proteomics, etc.) requires new ways to extract meaningful
information [2].

The methods presented in this thesis aim at introducing a way to obtain ther-
modynamics and kinetics estimates for a well-known case biological case study from
selected molecular features by using graph theory and machine learning (ML) tech-
niques.

Knowledge of these relevant properties (e.g., free energy of processes, transition
states, energy barriers, etc.) allows scientists to formulate theories and aid the design
of ad hoc molecules for different tasks, like peptides, antibodies or drugs for specific
molecular targets. The study of the thermodynamics and kinetics properties of a
biological system is a non-trivial problem since these are often difficult to capture
by the experimental approaches [3]. On the other hand, computational approaches
are generally a trade-off between accuracy in the results and simulation time [4].
They could take from days to weeks of calculations to converge on the final value
depending on the complexity of the problem and the number of simulated atoms.
In this respect, our goal is to build a neural network (NN) model general enough

3

to estimate relative free-energy values in the problem of conformational sampling
of molecules. This topic is related to protein folding and drug/protein interaction,
which have been tackled several times by ML approaches [5, 6].

In the ”Background” section, a comprehensive list of ML approaches is offered
so as to outline how these powerful techniques have been employed to solve biolog-
ically relevant questions so far. Moreover, the next chapters will give the reader
a closer look to preparatory notion and ML approaches necessary to understand
our procedural choices and interpret the results. A special focus will be given to
graph convolutional networks, which are part of a new, mostly unexplored research
field. Here, the same assumptions for image-recognition-based ML approaches, one
of the most addressed research topic, cannot be fully applied. Therefore, method
properties and related problems will be further discussed. Successively, the obtained
results will be presented, discussing with more details the different use cases where
our models might be applied. Finally, future perspectives will be presented on how to
improve the work done so far, listing important features to add or revise and possible
improvements of our models to solve the current limitations, such as the use of hy-
pergraph NN. This work also offers a broad analysis of the problems that free-energy
calculations with ML must deal with, in order to achieve meaningful results.

1.2 Background

The powerfulness and flexibility of the NNs make them a model that is used in a
variety of tasks such as speech recognition, image and video processing, and video
games [7, 8, 9]. The breakthrough of NN was brought by the first successful work
in recognizing handwritten digits [10], in which weight sharing and backpropagation
were firstly implemented. The evolution of the design of NNs led to the birth of deep
learning (DL), which refers to the multi-layer architecture for NN. DL is good at
approximate very complex data structures and it is applicable to many fields, such
as disease recognition [11] and particle accelerator data analysis [12].

The improvements in ML methods have been successfully applied also to lots of
reserch fields in the chemical and physical areas. The molecular modeling is one of
the most investigated topics. There, ML is used for several complex tasks like coarse-
grained molecular dynamics, kinetics and thermodynamics calculations. The advent
of deep NN was a breakthrough in these research fields, bringing fresh air and new,
different point of views. The Quantum Mechanics (QM) approaches received a lot
of attention, with the development of models to accelerate computations, investigate
electronic configurations, and analyze material properties in the quantum realm [13,
14, 15]. One of the first approaches tried also to improve Molecular Dynamics (MD)

4

simulations by computing potential energy surfaces from QM [16]. Improvements in
the QM calculations brought new, more precise, force fields [17] that lowered the error
of some MD simulations compared to experimental assays. ML approaches were also
employed to analyse MD trajectories with the purpose of defining optimal Collective
Variables (CVs) [18] or isolating transition states [19]. Moreover, they were used in
enhanced sampling techniques [20], in order to accelerate the MD sampling. With
regard to the free energy problem, while the potential energy function associated with
the atomistic representations is known, the problem of computing the free energy of a
system as a function of the CVs has no analytical solution and represents the goal of
the presented work. Enhanced sampling methods have been assisted by ML methods
in the bias potential approximation [21].

1.3 Preparatory notions

In this section, a brief description of the fundamentals of chemistry, physics and
biology is presented in order to introduce the reader to concepts and words that will
be used in the upcoming chapters.

The complexity of nature represents an impervious forest with hidden secrets that
the scientific community is trying to unveil. Each new path reveal invaluable infor-
mation that allows us to shed light on important processes. In the case of biology,
countless pathways and mechanisms regulate our daily life. Misregulation or inter-
rumption in one of these processes can lead to dangerous diseases or, in the worst
case, death. For this and many more reasons, an incessant progress in research and
development of new methods must be pursued. In this regard, computational sciences
are providing invaluable information to the scientific community by simulating in sil-
ico relevant systems, encompassing several disciplines such as biochemistry, material
science, fluid dynamics, etc. These simulations produce data that replicate with
a certain accuracy the behaviour of atoms, allowing to estimate physico-chemical
properties and energetic values that can be complex or time-consuming to obtain
through experimental methods. In detail, in the present work we focus on alanine
dipeptide, which is a peptide, structurally similar to proteins even though much
smaller. Proteins are machineries that allow cells to work and process the countless
chemicals essential for life. They can widely vary in dimensions and function and are
made of building blocks called amino acids. The process of synthesizing a protein
is called translation and it is promoted by ribosomes and a messenger ribonucleic
acid (mRNA), which in turn is composed of nucleosides. There exist 4 kind of nucle-
osides for the mRNA (adenosine, uridine, cytidine and guanosine) and each triplet
of nucleosides (also known as codon) translates for one of the possible 20 natural

5

amino acids. It is worth noting that the number of combinations using 4 bases far
exceeds the number of unique amino acids (34 > 20), thus more than one codon can
translate for the same amino acid.

All amino acid share common features: a central carbon atom, known as carbon
α (Cα), bonded to an amino group (NH2), a carboxyl group (COOH), a hydrogen
(H) atom, and a side chain (R group). The latter is what distinguishes the amino
acids among themselves and it may vary in length and structure. The sequence, the
three-dimensional disposition and the number of aminoacids determine the kind of
peptide or protein and its function. The covalent bonds formed between two amino
acids are called peptide bonds. They are formed when the carboxyl group of the first
aminoacid and the amino group of the second one combine, releasing a molecule of
water during the process.

Up to a certain amount of amino acids, we speak about peptides (< 5000 Dal-
ton), whereas long chains of amino acids (or many chains) compose the protein.
All the bonds that connect one aminoacid to the other form the main skeleton of
the molecule, also called backbone. Its disposition and movement outlines impor-
tant characteristics and behaviours of the system. As it will be discussed later
(section 2.2), these properties have important implications in the evaluation of the
conformational free energy and recognition of metastable states during the sampling.

Proteins can be organized depending on the number of subunits they are com-
posed of. They can assume different conformations (conformational ensemble), al-
though the most important one is the conformation that allows the protein to fulfil
its role (native). The process in which the protein folds to reach its native confor-
mation is called folding and it is to date an unresolved task that computational
approaches tried to tackle several times [5]. The structure assumed by a protein can
be divided in 4 categories in increasing order of complexity:

• primary: the plain sequence of amino acids.

• secondary: the three-dimensional arrangement populated by amino acids. These
shapes are built based on the H-bonds that amino acids form among them-
selves. The most common shapes of secondary structure are the α-helix and
the β-sheet, playing an important structural role in most proteins. This is the
highest level of complexity in peptides.

• tertiary: the three-dimensional disposition of all the secondary structures in
the chain. Here, one may observe interactions between side chains of distant
aminoacids. As a general rule of thumb, in aqueous solution the hydrophilic R
groups tend to face the solvent, whereas the hydrophobic ones cluster together
forming the core of the protein.

6

Figure 1.1: α-helix and the β-sheet H-bonds interactions. Credits to OpenStack
Biology [22]

• quaternary: the combination of more chains or subunits. In a system where
there are multiple chains, they are held together by non-bonded interactions.
Not all proteins reach this level of complexity.

One last concept that is important to introduce is intermolecular forces. Few of
these were already mentioned in the previous paragraph (i.e., non-bonded interac-
tions). Although they can not compete in energy with covalent bonds (formed by
sharing electon pairs between atoms), they are vital in a plethora of processes (e.g.,
maintaining protein structure, non-covalent drug-target interactions, protein-protein
interactions, etc.). We will divide them in two families (i.e., electrostatic and Van
der Waals interactions), since this will help in explaining how they are treated in MD
simulations. The electrostatic interactions are present when charges are involved
and the applied forces can be attractive or repulsive depending on the charge of the
interacting groups. On the other hand, the Van der Waals interactions consider
the correlations in the fluctuating polarizations of nearby atoms, therefore including
all multipoles starting from induced or fixed dipole. Also in this case, we can have
repulsive or attractive forces that are generally very low in energy. Nonetheless,
the huge amount of these kind of interactions allow them to influence the behaviour

7

of molecules. Hydrogen bonds (also known as H-bonds), are a particular class of
electrostatic interactions since their energy is highly dependent on the geometry of
the interaction. As previously mentioned, these interaction are very important in
peptide and protein secondary structure formation.

8

Chapter 2

Molecular Dynamics

MD simulations [23] were born as a way to reproduce many-particle systems and
compute particular properties of interest. These properties are tipically measured as
an average over a large number of particles and time. At the base of MD stands the
ergodic hypothesis, which states that: considering long periods of time, supposing
that the system state does not depend on the starting particle position and the
system has constant energy, volume, and particles (microcanonical ensemble), then
the average in time of a certain property can be measured as the average on the phase
space of positions and momentum of particles, or ensemble average. To reproduce
the motion of atoms in a molecule, it is necessary to replicate their behaviour by
creating a force field, a set of properties and potentials, that rules the interactions
among atoms. Ideally, an high accuracy description of the properties of molecular
systems is given by the time-dependent Schrödinger equation [24]. However, such
a detailed level of information is unfeasible for many-particle systems, thus MD
generally follows the classical physics laws. This approximation is acceptable for big
systems (greater number of atoms involved), where the contribute of quantum effects
is negligible. However, the increase in particles also causes the exponential growth
in the number of computations to solve and the time necessary for the simulation
to compute the desired property. To date, MD simulations have been successfully
employed in various fields and the improvements in hardware performances allow to
simulate long and complex processes, such as drugs targeting receptors involved in
important biological pathways, protein polymerization, signal translation, etc. [23]

9

2.1 Molecular Dynamics fundamentals

Given a system ofN interacting atoms [25], MD simulations solve Newton’s equations
of motion:

mi
δ2ri
δt2

= Fi (2.1)

where the forces Fi are negative derivative of a potential function V (r1, r2, ..., rN):

Fi = −δV
δri

(2.2)

In turn, forces and energy are derived based on a set of atom properties and func-
tions collected inside a force field. Nowadays, there are a lot of different force fields,
each of them specialized on subsets of systems: proteins, organic molecules, ligands
and so on [26, 27, 28]. In an MD simulation, atoms are just hard spheres with no
information about hybridization and geometry. In order to reproduce the correct
behaviour, constraints are contained in the force fields and applied during the sim-
ulation, namely bonds, angles and dihedrals. Bonds control the relative distance
between two atoms, angles in the planar space form a relationship among 3 con-
nected atoms and approximate the atom hybridization, dihedrals or torsionals, are
rotational angles of a set of 4 connected atoms. Specifically, given 4 atoms, the tor-
sional angle is the angle between the plane formed by the first 3 atoms and the plane
formed by the last 3 ones (Fig. 2.1).

Figure 2.1: Example of constraints or bonded interactions to replicate molecular
behaviours, namely bonds (a), angles (b), and dihedral angles (c).

All these constraints are included in the calculation of the energy in force fields,
together with the electrostatic and Van der Waals contributions. For example the

10

Amber force field equation [29] reads as follow:

E =
∑
bonds

Kr(r − req)2 +
∑
angles

Kθ(θ − θeq)2+

∑
dihedrals

Vn
2

[1 + cos(nφ− γ)] +
∑
i<j

[Aij
R12
ij

− Bij

R6
ij

+
qiqj
εRij

] (2.3)

where Kr is the spring constant defining the strength of the bond, r is the distance
between two atoms, req is the equilibrium distance in the bond, Kθ is the spring
defining the strength of an angle, θ is the angle among 3 atoms, θeq is the equilibrium
value for the angle, Vn is the potential for a given dihedral angle of multeplicity n, φ
is the angle of the dihedral defined by 4 atoms, and γ is the phase of the dihedral.
The last term in equation 2.3 contains the two interactions that were presented in
the previous chapter. In particular, the Van der Waals interactions [30] are generally
described by the Lennard Jones potential with the following formula:

ULJ = 4ε

((
σ

r

)12

−

(
σ

r

)6)
(2.4)

where σ is the distance at which the potential is zero and r is the distance between
the atoms. The shape of the function can be appreciated in Figure 2.2. This form
is slightly different from the one reported in equation 2.3, where the terms A and B
can be seen as 4εσ12 and 4εσ6, respectively.

On the other hand, the electrostatic (or Coulomb) forces are described by Coulomb’s
law:

F = ke
q1q2
r2

(2.5)

where ke is the Coulomb’s constant, qi and qj are the partial charges of the two
particles and r is their distance. In equation 2.3 the two charges qi and qj are
processed in internal units that incorporate the Coulomb’s constant.

All the algorithms developed for integrating the equations of motion assumes that
positions, velocities and accelerations are approximated by a Taylor series expansion
[32]:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 + ... (2.6)

v(t+ δt) = v(t) + a(t)δt+
1

2
b(t)δt2 + ... (2.7)

a(t+ δt) = a(t) + b(t)δt+ ... (2.8)

11

Figure 2.2: An example [31] of interaction energy-distance relation graph obtained
from argon dimer

where r is the position, v the velocity and a the acceleration. It is worth noting
that the equations are solved in tiny time steps, in the magnitude of femtoseconds
(10−15s), since integration of forces must happen in the same time scale of the fastest
molecular degree of freedom (i.e, vibrations). After each integration step, the atomic
coordinates are written to an output file, that describes the trajectory of the simu-
lation in function of time.

It is mandatory to underline that MD simulations are based on a series of ap-
proximations in order to make the simulation sustainable in terms of computational
complexity and matematical feasibility. However, this does not mean that results
are flawed and can not be trusted. In fact, MD protocols and force fields have been
constantly fine-tuned to replicate reality with an acceptable discrepancy (e.g., cur-
rent calculations with MD allow to obtain energetic estimations with an error of 1-2
kcal/mol). We have to keep in mind that these approximations are inevitable and the
real world is too complex to be studied on its entirety. Using MD as a preliminary
observation tool can to save a lot in terms of money and time, therefore allowing to
test hyphotesis [33] before planning further work.

2.1.1 Preparing the simulation

MD simulations need to be initialized and configured properly for each system we
want to study. There is no one-fit-all system configuration because, depending on
the parameters we choose, a different desired behaviour may be highlighted from the

12

resulting trajectory. Below, the most important concepts to successfully carry out a
simulation are listed.

The first step consists of preparing the simulation box and the environment:

1. Choose the force field that should be used to assign properties to atoms. It
is worth noting that while MD treats atoms as hard spheres, each kind of
atom has unique characteristics, such as atomic number, mass, radius, charge,
number of electrons and more, defined in the force field;

2. Create a box around your system. If the simulation is not performed in vac-
uum, the program needs to know boundaries for the simulation. The periodic
boundary conditions (PBC) [34] are a way to substitute the boundaries of an
isolated system with periodic images of itself. In other words, the box is sur-
rounded with other translated copies of itself avoiding artifacts caused by hard
walls limiting the simulation space. When a molecule oversteps the box limit,
a copy of it will enter from the opposite side, maintaining constant the number
of particles.

3. Fill the box with a solvent (could be water, or nothing if we want to simulate the
molecule in vacuum). A molecule may act differently based on the solvent it is
inserted into, so it is necessary to recreate an accurate copy of the environment
where to observe a certain behaviour;

4. Add ions in order to neutralize the charge of the system. Ions are a particular
set of atoms which have a net electrical charge that is non-zero (formally it
is the difference between the number of protons, positive, and the number
of electrons, negative). Depending on the simulation conditions, MD might
require the system to have a total net charge of 0. This is needed if we use
PBC because the electrostatic evaluation algorithm will add to infinity (due to
the infinite periodic images). By having a total charge of 0, the electrostatics
sum to a finite value (i.e, 0).

All information proovided in the previous points are stored in two files, the co-
ordinate files and the topology. The latter contains the properties of atoms, with
bonded and non-bonded interactions. Instead the former contains the position in
Cartesian coordinates of all the atoms. Depending from the MD engine, format and
position of the information can change.

13

System equilibration

Before beginning with dynamics, one must assert that there are no inappropriate
geometry or steric clashes in the system, otherwise the forces computed will lead to
structural distortion and possible explosion fo the system.

The process that takes care of correcting these kinf of problems is the energy min-
imization procedure [35] which can use several techniques, such as steepest descent
or conjugate gradient techniques.

Given a vector r, containing the coordinates, the initial forces and the potential
energy [25]; the new atomic positions are calculated as:

rn+1 = rn +
Fn

max(|Fn|)
hn (2.9)

where hn is the maximum displacement and Fn is the negative gradient of the po-
tential V .

The algorithm stops when either it reaches a maximum number of iterations, or
when the absolute values of the gradient falls under a certain threshold ε.

After minimization, the system must be brought to the correct environmental
conditions. This procedure, called thermalisation, follows several steps intended to
reach the correct values of temperature, volume and pressure of the system without
causing artifacts. In order to explain these steps, we need to define a list of ensembles.
The study of the real world thermodynamics can be described throught a set of
observable variables [36]. Three important ensembles, environments that maintain
constant some macroscopical variables, have been defined by Gibbs [37]:

• NVE (microcanonical): Number of atoms (N), the system volume (V) and the
energy (E) are conserved.

• NVT (canonical): Number of atoms (N), the system volume (V) and the tem-
perature (T) are conserved. The energy must be exchanged with a thermostat.

• NPT (isothermal-isobaric): Number of atoms (N), the system pressure (P)
and the temperature (T) are conserved. There is the need of a thermostat and
a barostat that exchange pressure and temperature with the environment in
order to let the system vent.

It is worth noting that based on the chosen ensemble, different real system may be
described.

The effect of applying the correct variable values all of a sudden might create arti-
facts in the minimized structure that will be carried throughout the whole simulation,

14

flawing the results. Therefore, thermalisation consist in gradually ramping up tem-
perature, while regulating the volume of the system and monitoring its energy, until
the requested conditions are met. It is common practice also to employ high-energy
position constraints to preserve molecules inside the box that are susceptible to tem-
perature gradients. These constraints are gradually removed upon reaching the final
conditions. A combination of NVT and NPT ensembles at increasing temperatures
are used to stabilize volume and pressure of the system.

2.1.2 The production run

The production run is the last step in the MD protocol that produces a time-
dependent system’s trajectory by integrating the classical Newton’s equations of
motion [38, 25]. The production run represents the simulation that will be consid-
ered statistically relevant for the successive analysis. Depending on the complexity of
the studied system and the desired behaviour one would like to observe (e.g. folding,
binding free energy, etc.), the production run can take from nanoseconds to millisec-
onds. One real example of a specific supercomputer, created for running simulations
is the machine Anton 2 [39], able to perform, on a 23’588-atom system, 85µs/day
(180 times faster than any general-purpose supercomputer nowadays).

To avoid spending months while waiting for the production run to finish, one can
employ enhanced sampling methods that accelerate selected slow degrees of freedom
in the system to improve the sampling. In this way the system does not remain stuck
for long times in states of minimum and convergence in results is reached faster. One
of such techniques is called MetaDynamics (MetaD) and it was used for this project,
thus it will be presented in the following sections.

2.2 Free energy

In chemistry, direction of a specific reaction can be defined by its free energy value.
In the hypothesis of having a reversible process [40], the free energy of a system
can be defined as the maximum amount of work that the system can exert [41].
Depending on the conditions of the simulation, we have different definitions of free
energy. For the purpose of this work, we will use the Gibbs free energy (G), which
is obtained for systems with fixed temperature and pressure (general conditions in
experiments). The Gibbs free energy is defined as:

G = H − TS, (2.10)

15

where H is the enthalpy, T the temperature, and S is the entropy of the system.
However, it is generally the relative value of free energy that is interesting and holds
physical meaning. In other words, it would be very informative to estimate the
difference in free energy (∆G) between reagents and products, to assess if a process
is favourable or not (i.e., if its ∆G is negative or positive, respectively). Due to the
complicated nature of the free-energy formula, there is no analytical solution for it,
but it must be solved numerically. With respect to this work, the free energy of a
conformation is considered as a relative value with respect to the absolute minimum
of that system, meaning that all computed free energies represent differences in free
energy.

Exploring and quantifying the Free Energy Surface (FES) of a system is an im-
portant topic in several fields (chemistry, biophysics, bioinformatics) [42]. One can
obtain important thermodynamics and kinetics parameters that might be difficult
or time-consuming to be evaluated by means of experimental assays [43]. Moreover,
few information can only be gathered through in silico simulations, such as partic-
ular metastable states, saddle points for transition states, etc. Analysis of energy
barriers [44] and low energy pathways in reactions allow us to tweak and engineer
new molecules with ad hoc features for specific problems (e.g., drug optimization).

Figure 2.3: An example of Free Energy Surface: Alanine Dipeptide, in function of φ
(phi) and ψ (psi) dihedrals.

2.3 MetaDynamics

Molecular Dynamics has some important limitations due to the nature of its algo-
rithms. The more complex the system and the higher the number of degrees of

16

freedom, making the process very slow. Moreover, a molecule is not favoured to
leave a minimum, overcome an energy barrier, and explore another minimum, un-
less enough time and energy are provided. What if we would like to explore the
entire Free Energy Surface (FES) in a quicker way, by forcing the escape from the
minimum?

MetaD [45] enhances the sampling by adding an external bias to selected reaction
coordinates (also known as collective variables) of the system in the form of small
Gaussians [46]. Under the MetaD regime, the system overcomes even large energy
barriers and explores the FES in a computationally affordable simulation time. This
also provides a quantitative determination of the FES as an implicit product of the
process by rescaling the known amount of additional bias deposited.

In MetaD, the selection of the Collective Variables (CV) is a crucial step. By
representing the system with a finite number of relevant CVs si, where i ∈ (1, n)
with n small, the resulting FES F (si) can be defined as a manifold of order n.
Each CV should represent an important degree of freedom of the system that must
be accelerated. However, complex FESs require long time to be explored and in
addition, the convergence time of the calculation exponentaially increases with the
number of the CVs biased during the simulation. Moreover, selection of unnecessary
CVs may lead to meaningless results, thus methods have been developed for a clever
selection of the most important CVs [18].

Exploration of the FES is driven by the forces applied along the chosen CV. To
correctly estimate these forces, a number of replicas are launched in parallel, each
one respecting a constraint applied to the CV s

(0)
i . By writing this constraint in a

form familiar to MD simulations [47], it is possible to add the following term to the
Lagrangean: ∑

i=i,n

λi(si − s0i) (2.11)

where λi are the Lagrange multipliers. By averaging in time and over the replicas,
it is possible to obtain the forces F

(0)
i = 〈λi〉 [45].

But this alone does not guarantee the exploration of the whole FES; that is the
reason why a history-dependent term must be applied to force the system to explore
new regions.

The introduced potential V , in function of the CVs ~s and time t, is built as a
sum of Gaussian kernels with the following form:

V (~s, t) =
∑
kτ<t

W (kτ) exp

(
−

n∑
i=1

(si − s(0)i (kτ))2

2σ2
i

)
(2.12)

where:

17

• τ is the Gaussian deposition stride

• σi is the width of the Gaussian for the ith CV

• W (kτ) is the height of the Gaussian, k ∈ Z
Depending on the width and height of the Gaussian functions and given enough

time, the bias potential will completely cover the underlying FES, which can be
reconstructed following the formula:

V (~s) = −F (~s) (2.13)

The correct choice of the hyperparameters W , σi and τ allows a swift and easy
completion of a MetaD simulation. Unfortunately, the perfect estimates can be
chosen only for systems with well known characteristics. A way on how to assess
acceptable values in case of unknown systems are reported in the original Metad
paper [45].

Although the technique demonstrated its ability to highly accelerate the sampling,
a well-known problem in MetaD is the error between the real underlying FES and the
complemented potential V (~s). The ideal situation would be that the added potential
completely covers all energy barriers and the sum of the FES and the potential should
give a uniformely flat surface. However, by adding constant Gaussian potentials of
height W , MetaD keeps creating an irregular surface, oscillating around the real
value with an error proportional to the value of the chosen parameters.

This behaviour was corrected few years later with the development of the Well-
Tempered MetaDynamics.

2.3.1 Well-tempered MetaDynamics

Well-tempered MetaDynamics (WT-MetaD) [48] is an evolution of plain MetaD,
developed to correct the oscillating behaviour at the end of the simulation. Using a
chosen temperature as reference, it computes dynamically the height of the Gaussians
potentials to be placed in order to decrease it over time when sampling already visited
states. It has been demonstrated mathematically that WT-MetaD is able to converge
to the correct free-energy value given an infinite amount of time [49]. From a practical
point of view, the function for the Gaussian potential is very similar but its height
is rescaled according to the following term:

W (kτ) = W0 exp

(
−V (~s

(0)
i (kτ), kτ)

kB∆T

)
(2.14)

where:

18

• W0 is the initial Gaussian height

• ∆T is the reference temperature

• kB is the Boltzmann constant which puts in relationship the average relative
kinetic energy of particles in a gas with the thermodynamic temperature of the
gas. kB = 1.380649 · 10−23J ·K−1

It is worth outlining that the bias potential with a dynamic height converges in
the long time limit but it does not guarantee to fully compensate the underlying
free energy. This is a desired effect since one may not want to explore physically
unfeasible states.

The potential in the long time limit becomes:

V (~s, t→∞) = − ∆T

T + ∆T
F (~s) (2.15)

where:

1. T is the temperature of the system

2. ∆T is the extension, in reference to the temperature, that we want to explore

In the long time limit, the sampling is in an ensemble at a temperature ∆T + T .
With ∆T = 0, it’s a standard Molecular Dynamics simulation, with ∆T →∞ it’s a
standard MetaDynamics.

2.4 Alanine Dipeptide

The experiments carried out in this project consider alanine dipeptide as the reference
molecule. Alanine dipeptide [50] is a very simple system, well studied in literature
and formed by a chain of 1 amino acid and 2 terminal groups (ACE-ALA-NME).
This has been chosen as reference because of the wealth of literature data on its
FES and its role as stepping stone in methods focused in computing a FES before
progressing to more complex systems.

The FES of the Alanine Dipeptide is often described as a function of the two most
central backbone dihedrals φ and ψ, since they are known slow degrees of freedom
for this system. It shows two minima, named C7eq and Cax, located at, (φ, ψ) =
(-1.45, +1.30) and (+1.22, -1.22) radians [51] (Figure 2.4), respectively. The two
metastable states are divided by an energetic barrier of ∼8 kcal/mol [52].

19

Figure 2.4: Alanine Dipeptide FES in function of φ and ψ

The ease of studying the FES of the Alanine Dipeptide comes with the fact that
dihedrals by themselves give already a detailed description of the FES, thus they are
the perfect CVs. In other, more complex systems, a combination of the dihedrals
values might not be enough to explain fully their FES. In such cases, different CVs
should be chosen.

20

Chapter 3

Introduction to neural networks

In this chapter, a general overview is given about functioning and reasoning behind
NNs. It starts from the high-level concepts and how they are achieved mathemat-
ically, going through the tasks they are used for and explaining the optimization
methods that contribute in accelerating the learning problem.

3.1 Neural network fundamentals

The main concept behind NN models is the imitation of the brain connections.
In the brain, neurons are communicating among them, producing an output based
on the received input signals. The expressivity power of the brain does not come
from a single neuron, but from a combination of them. NNs are built mimicking
the brain architecture; by showing enough examples with the desired label, NNs
learn an approximation (whose parameters are the NN weights) of the function that
correlates input features to their respective outputs. Moreover, NNs can learn relative
importance among neurons connections by prioritizing one with respect to another
based on the received input, therefore becoming a universal function approximator
when using a high-enough number of neurons stacked layers [53]. The building block
of a NN is the perceptron, represented as a linear combination of input parameters,
followed by a non-linear activation function. Imagining a sequence of perceptrons,
the output of the i-th one is computed through the following formula [54]:

yi = fi
(∑ n

j=1
wijxj + θi

)
. (3.1)

where xj is the j-th input parameter with j going from 1 to n, wij is the connection
weight that links the j-th input parameter to the i-th neuron, θi is the weights-

21

independent bias, and fi(·) is the non-linear activation function that transforms the
weighted sum to describe abstract relationships among input data.

3.1.1 Activation functions

Why do we need a non-linear activation function? Neurons in brains may be in an
active or sleepy state [55], with their output being significant only if there are enough
input stimuli. The activation function mimics this behaviour in the perceptron [56].
As a by-product the non-linearity enables the real power of NNs, by allowing to
approximate non-linear, thus more complex than the linear combination of inputs,
functions.

The common characteristic of an activation function is its derivability since it
will be used to train the network with a backpropagation algorithm as explained in
subsection 3.1.3. Some of the most used activation function are shown below:

• Sigmoid:

Sigmoid(x) =
1

1 + e−x
(3.2)

• Hyperbolic tangent:

Tanh(x) =
ex − e−x

ex + e−x
(3.3)

• Rectified Linear Unit:
ReLU(x) = max(0, x) (3.4)

• Gaussian Error Linear Unit:

GELU(x) = x ∗ φ(x) (3.5)

where φ(x) is the cumulative distribution function for Gaussian distribution
[57].

3.1.2 Loss functions

NNs can be designed to be supervised or unsupervised, depending if the data set
has pre-existing labels or not, respectively. The methods used in this thesis are all
supervised ML models, in which a loss function output is computed against the true
label and used by the optimization method to update the connections’ weights. A
loss function should be able to process scalar values as well as vectors and the learning

22

(a) Sigmoid (b) Hyperbolic tangent

(c) ReLU (d) GELU

Figure 3.1: Most used activation functions

process can be summarized in the minimization of its output, which corresponds to
the error between the NN estimate yi and the data label ti, with respect to the i-th
training istance. The most common loss functions are:

• Mean Squared Error:

MSE =

∑n
i=1

(
yi − ti

)2
n

(3.6)

• Root Mean Squared Error:

RMSE =

√∑n
i=1

(
yi − ti

)2
n

(3.7)

23

• Mean Average Error:

MAE =

∑n
i=1

∣∣yi − ti∣∣
n

(3.8)

where n is the number of output values.

3.1.3 Learning problem

The idea behind training a neural network is simple but very powerful. As previously
reported, it can be described as an optimization problem where the loss function is
minimized. This is accomplished by using an optimization method and the back-
propagation algorithm over the NN weights. During the forward step, the input
goes through a stack of neurons layers and the network returns an output consisting
of one or more values, which are used to compute the loss. In the backward step, the
gradient of the loss with respect to the weights is computed in all the layers. Then,
weights are updated using the preferred optimization method.

This process, called backpropagation [10], is repeated many times for all the
instances in the training set, to reach a good approximation of the hidden function
(i.e., the unknown function that best correlates input to output). One round of
training, where all the training instances are fed into the network, is called epoch.

3.1.4 Optimization methods

The algorithms that try to find the parameters that optimize a given function are
called optimizers, the most common being Stochastic Gradient Descent and Adam
[58].

Gradient Descent GD is a method to optimize an objective function [58] f(θ),
where θ contains tunable parameters (similar to weights in NNs). This is done by
following the negative gradient δf

δθ
in order to update θ step after step:

θ(t+1) = θ(t) − η · δf
δθ(t)

(3.9)

where η is the learning rate hyperparameter, a coefficient controlling how much the
weights are modified towards the direction of negative gradient, t is the current
optimization step.

24

Adam Adaptive Moment Estimation (Adam) [58] is a method born to correct the
direction of multiple consecutive steps towards the gradient direction. Momentum is
a method that helps accelerate in the relevant direction and smooths the oscillations
of consecutive optimization steps. Adam [59] algorithm updates, at each step t,
the exponential moving averages of the gradient mt and the squared gradient vt
controlled by two decay hyperparameters β1 and β2. On top of that it computes the
parameters θt as:

θt = θt−1 − α ·
m̂t

(
√
v̂t + ε)

(3.10)

where m̂t and v̂t are the bias-corrected moving averages, α is the stepsize and ε a
small positive number (usually 10−8).

3.1.5 Classification and prediction tasks

Usually, the data set is split in three parts, each with a specific goal:

1. training set: it is used to teach the model how to predict (or classify);

2. validation set: is used to avoid overfitting;

3. testing set: it is used to assess the performance of the trained model.

Regarding the first point, models may be trained on classification or prediction
tasks. The former happens when the entire dataset has labels belonging to a finite
and discrete set. When doing these kind of tasks, the network usually uses a final
layer of softmax activation with n outputs, where each one of them represent a single
label class. Instead, if the task is the prediction (or regression), the output has to
be a single number: the result of the regression. In the methods presented in this
thesis, we will always employ prediction tasks.

The second point represents an important step in the NN training and the next
chapter has been specifically dedicated to the overfitting problem.

Finally, in the testing set the performance of a model is evaluated by means
of selected metrics. For prediction tasks, the most employed metrics are the same
function used for the loss function (i.e., RMSE, MSE, MAE). To be noticed that, even
if the same equation is used for both loss function and metric, the former guides the
training process (point 1) while the latter computes the performance of the trained
model, respectively.

25

3.1.6 Overfitting problem

The usefulness of a model does not come in its ability to discriminate (or predict)
training instances, but in its estimation of unseen data. During the training pro-
cess, the weights applied to the input parameteres will converge to a specific value
while the objective function (the loss) is minimized against the training data. If we
keep training, the model might move away from the generalization of the underlying
hidden function, specializing on the seen instances. We have to consider that the
training instances do not encompass the entire spectrum of meaningful data, thus
keeping the model general is paramount.

The problem of over-fitting is well-known in the supervised ML world: the model
is able to predict with a very low error instances in the training set, but generalize
very badly on unseen instances. One way, but not the only one, to spot the overfitting
is to plot the loss function on the training set side-by-side to the one of the validation
set for each epoch. If we pick a fixed amount of epochs to train the model, we will
notice that at first both functions rapidly decrease. This behaviour will slow down
up to a moment when the validation function will invert the trend while the training
error will keep getting lower and lower.

At this point the model will have began the over-fitting phase, where it overlearns
how to reduce loss on training data, slowly losing the ability to generalize. The most
general instances we use in our validation set, the more we can realize the model is
overfitting by looking at the validation loss over time. That’s why the broadness of
example in the dataset is the key to avoid (and recognize) overfitting.

Various techniques have been studied including two of the most common being:
dropout (used in the EdgePooling layers) and early stopping.

Early stopping The early stopping goal is to understand when the overfitting
phase starts and block the training process before the model becomes too specific
on the training data. A prediction on the validation set is done after each epoch of
training to keep track of the loss on unseen instances. It is helpful to remeber that
the validation instances are not used to update the network parameters but only to
check whether to stop the training or not.

When the model approaches convergence, it is possible that the validation loss
fluctuates around a given value. In early stopping, a patience hyperparameter is set
so as to define a threshold point at which the training phase will be stopped. In
practice, this value represents the number of epochs that are waited without any
improvement in the validation loss. If an improvement over the last best validation
loss happens, the patience counter is reset to 0. Otherwise, the training is stopped

26

and the testing phase begins.

Dropout Dropout [60] is a technique used to avoid over-fitting which randomly
drops NN nodes during training. The choice of which units to drop is random, so
that each unit must learn to work with a randomly chosen sample of other units.
This should turn the NN more robust towards noise.

3.2 Deep learning

The need of NNs that approximate more complex non-linear functions led to the
design of Deep Neural Networks (DNN) [61]. A deep-learning architecture is a stack
of learning modules that compute non-linear mappings. The increased number of
layers and weights allow to learn representations with multiple layers of abstraction
[9]. DL models have a very large number of learnable weights, thus they are able to
represent very complex functions, but they also need a huge amount of training data,
with the risk of overfitting it. This may happen because the function is composed by
thousands of parameters that are able to learn very specific details of the instance
data.

3.2.1 Convolutional Neural Networks

Convolutional NNs (CNNs) are designed to process data that comes in the form of
a multi-dimensional array [9]. The easiest example of structured data is a grey-scale
image, encoded through a matrix of pixel, each containing the grey value to display.
While each pixel on its own might not be so useful to understand the meaning of
the whole picture, combining neighbours together give us insights about a specific
object; the opposite applies for two very distant pixels in the image that are very
unlikely to have a common meaning. It is important then to pass, the concept of
structure to the network since it helps the NN in reasoning at a higher logic level
instead on the plain values only.

CNNs have brought a breakthrough in the image processing and recognition field
because of their structural approach. Combining local connections, shared weights,
downsampling and the usage of many layers [9] they are able to generally reason over
structured data and, given a huge amount of training data, to not overfit on samples.

The key of the success of CNNs is their ability to exploit structure properties
such as stationarity, compositionality and locality of natural sciences data [10], while
generalizing on the input dimension. Stationarity is a data property identifying

27

similar local patterns shared across the domain. These local features are recognized
with localized convolutional filters [62]. The compositionality enables the NN to
perceive higher-level characteristics, shared across different instances of the same real
world object. At the same time, features are statistically more prone to be influenced
by other features closer in the structure (locality).

CNNs have become the leading solutions for all the task regarding image process-
ing and recognition. They combine three key principles to reason over structured
data: local connections, shared weights and aggregation functions [9].

The potential comes with the possibility of definition of multiple feature maps
(convolutional filters) so that different local features can be extracted from the same
portion of data. As a by-product we greatly reduce the number of parameters of
the network, but at the same time it is common to define a large number of filters
so that several features may be detected. The k-th output feature map Yk can be
computed as [7]:

Yk = f(Wk ∗ x) (3.11)

where x is the input image, Wk is the convolutional learnable filter, ∗(·, ·) is the
convolutional operator that computes the inner product between the filter and each
location of the image, and f(·) is the non-linear activation function.

Each filter is applied all over the structured data in order to detect common fea-
tures across the whole domain. Low level features need to be aggregated so that the
next layer of convolutional filters can use them to detect higher-level ones. Pooling
layers, which aggregates the information contained in a local portion of the structure,
are designed for this purpose. Usually the output of pooling is computed through
max or average functions, with no learnable parameters, which discard information
to focus only on a relevant portion of a feature map. As a by-product of the aggre-
gation, the size of the input is reduced considerably, thus being less computational
expensive. The combination of a convolutional and a pooling layer represents the
main building block of deep CNNs.

The high-level features extracted, then, have to be translated into the desired
output (a single value in case of prediction, a vector otherwise). Usually, the module
that takes care of this is composed by a number of fully-connected layers, which
express the output as a complex combination of the high-level features.

The main skeleton of CNNs can also be applied to irregular structures, like graphs
and manifolds. More attention will be given to NNs for graphs in the next chapter
with a specific attention to some of the layers that have been considered in this
discussion.

28

Chapter 4

Geometric Deep Learning

Most of the ML techniques that have been presented so far are suited for data that
belongs in the Euclidean space such as images. Euclidean spaces are defined by Rn,
thus containing data modelled in n-dimensional linear space. The topic of the follow-
ing work instead will focus on graphs, unordered structures where the conventional
approaches could not be applied straightforward. In this chapter a description of
the different approaches for graph NNs is given, with a detailed explanation of the
current state-of-the-art techniques that have been used in chapter 6.

4.1 Introduction to Graph Neural Networks

In the category of Graph Convolutional Networks belong all the NNs that take into
consideration structured data in the shape of graphs. A graph is a pair G = (V,E)
where each vertex (or node) v ∈ V is connected with other vertexes (or nodes) by
edges e ∈ E. Each edge is an ordered pair eij = (vi, vj), meaning that vertex vi is
connected to vj.

An highlight on the notations for graphs [63] is given, in order to understand
better what is presented in the upcoming sections:

• N(i) = {j ∈ V |(i, j) ∈ E} is the set of vertexes that form the neighborhood of
a node i.

• A is the adjacency matrix of size n× n that describes the connections among
vertices:

Aij =

{
1 if eij ∈ E
0 if eij /∈ E

(4.1)

29

• D is the degree matrix of size n × n. It’s a diagonal matrix where each value
dii represents the degree of the vertex i. For undirected graphs, the dii is
the number of attached edges on i. For directed ones we distinguish between
incoming and outcoming degree, counting the respective type of edges.

• X ∈ Rn×d is the matrix of the node features, with d number of features per
node.

• Xe ∈ Rm×c is the matrix of the edge features, with m cardinality of E and c
number of features per edge.

On graphs we may be interested in several classification (or prediction) tasks,
depending at which level of granularity we want to obtain information. The difference
between classification and prediction is given by the very last layer: single-value
output for prediction and softmax layer with N values (for N classes), usually; but
they should not influence the model hidden representation. Tasks can be divided
into 3 main categories:

• Node-level tasks: one simple example could be classifying users in social net-
works as bots or not. Each node (or most of them) has to be given a classi-
fication, an output, on which it’s computed the loss function. Information is
propagated through convolutions on the edges in order to extract high-level
node representations.

• Edge-level tasks: same as for node-level ones but we have to classify edges
instead. Usually using two high-level nodes representations, it has to classify
the edge that links them [63]. An example could be classifying the relationship
between family members (parent, relative, son, etc...)

• Graph-level tasks: one single output (or many, but independent from vertices
cardinality) per graph, either a class or a prediction. Here GNNs are used with
a combination of convolutions and pooling to reduce, step by step, the whole
graph to a single output. Pooling are used in order to decrease the breadth
of the graph while increasing the number of high-level features. An example
here could be our use case: computing the free energy of a given molecule
conformation.

Since the increasing interest in applying deep learning strategies and model to
structured data, several approaches have been developed for non-Euclidean data [63]
(graphs and manifolds), too. The basic principles have been taken from the deep
learning literature for speech recognition, image, video, natural language processing

30

and so on. The data is usually represented in the Euclidean space, with a well-
defined structure: images, for example, are composed by pixels in a 2-dimensional
grid, neighbouring pixels can be exploited to capture patterns, while 2 distant pixels
have very little to share. Moreover the number of neighbours is fixed and consistent
(apart from borders) across all the structure. In graphs, these well-defined rules
don’t exist: edges represent an abstract relationship, not always about distance, that
sometimes need to be labelled (to carry additional information) to specify, often in
a qualitative way, the meaning of the connection. It’s easy to think about a real
example: in Facebook, while we mainly have friends (bidirectional relationship), we
also follow pages (unidirectional). Moreover, we can get reactions on our posts,
love, like, laughings and so on can be modelled as a qualitative relationship between
friends and our posts.

Such data is large and complex and is a natural target for ML, however is a
bit more complex to deal with, since the irregularities and its heterogeneous nature.
Geometric deep learning [64] is the term that refers to this category of deep learning
models that interacts with graphs and manifolds.

Non-Euclidean data doesn’t have also a system of coordinates and a vector space
implicit structure [64], unlike in images. Graphs can be irregular, with different
number of nodes, variable number of neighbors, several qualitative (or quantitative)
meaning of edges, making it difficult to make the same assumptions as the ones made
for the image domain. For graph-level tasks, it also holds the permutation invariance
property [65].

Permutational invariance

Given a graph G where each node have the same number and type of features, if we
exchange the labels of two nodes, the regression function should be invariant to it.

More formally, given a function f and a graph G, G′ = f(G) = f(P ?G) where P
is a permutation matrix and ? is the reordering operator that takes care of reordering
nodes and edges accordingly; the network should be able to predict the same graph-
level value from both G and G′.

The approaches used on Euclidean data then cannot be used for graph as they
are. The first used method is the network (or graph) embedding [66]: the graph
structure can be encoded in low-dimensional vectors, in a learnable way, without
having to use some heuristics or exploiting graph properties that may not be suitable
for all the use cases. With this technique researchers are approaching the problem
of using ML models on graph from the opposite point of view: bringing the graph
to a structure that is usable by existing ML frameworks, known in literature. While

31

this seems a good idea it may not be optimal: why not dealing with graphs in
their natural form? Graph Convolutional Networks tries to tackle the convolutional
problem directly exploiting graph-related properties/structure in order to learn high-
level representations.

4.2 Graph convolutional layers

Graph convolutional layers belong to two main categories: spectral layers and the
spatial ones [63].

4.2.1 Spectral-based methods

The spectral-based NNs define convolutions as a filter of graph signal processing.
They use the Laplacian L, which is a matrix representation of the graph. L encodes
the information coming from the adjacency and the degree matrix of the graph. For
simple, undirected graphs it is computed as:

L = D − A (4.2)

but we can define a normalized one with the following formula:

L = In −D−
1
2AD−

1
2 (4.3)

where In is the identity matrix of size n (that is the number of nodes in the graph)
D is the degree matrix and A the adjacency one.

The benefit of working with the normalized one is that it is a real symmetric
positive semidefinite matrix, thus it can be factored in eigenvalues (spectrum) Λ and
eigenvectors U, L = UΛUT , therefore exploiting graph signals and graph Fourier
transform theory. In doing so, the spectral convolution ? is defined as a filter gθ =
diag(UT) over the graph signal x:

x ?G gθ = UgθU
Tx (4.4)

assuming that the filter is learnable (like every learnable feature map).
Due to the nature of Laplacian, convolutions in spectral-based approach face

some limitations [63]:

1. Any changes in the graph, ends in a eigenbasis change

2. Learned filters are dependent on the domain taken into account, that means
they cannot be reused with a different graph structure.

32

3. Eigen-decomposition requires O(n3) computational complexity.

While there have been lots of improvements on the computational complexity side,
the main limitation that moves most of the research on spatial-based approaches
comes from the fixed structure that graphs must have in order to use these convolu-
tions. ChebNet [67], and further studies, solve this limitation by applying the filter
on a localized portion of the graph, thus being applicable to graph of any size. Even
though the improvement of these, they work on a graph signal representation and
not directly on nodes and vertices as the spatial methods do.

4.2.2 Spatial-based methods

Similar to what we have in the convolutional layers for images, spatial-based con-
volutions work in the spatiality (neighborhood and forth) domain of the graph. A
grid of pixels can be seen as a graph where each node (pixel) is connected to its
neighbors with an edge, the RGB channels are the nodes features. When we apply a
filter using conventional convolutions, we use a fixed p× p learnable matrix applied
as a sliding window on top of p× p pixels; if we consider p = 3 it means that we are
convolving the information present only the central pixel and its direct neighbors,
like in a graph would be only a node and its direct connections. The analogy holds,
but in graphs we have two main differences: the variable number of neighbors and
the unordered structure. The main idea of spatial convolution in graphs still remains
the same: to propagate the information through the edges in a learnable way.

As this will be the category of convolutions that we are going to use to build the
desired model, an explanation of some convolutional layers is given in order to have
a clear understanding of how they work.

Diffusion Convolutional NN [68] defines the convolutional operator as an op-
eration that takes into account the probability of a message to be spread across
neighborhood:

H(k) = f(W(k) � P kX) (4.5)

where:

• f(·) is the activation function

• P ∈ Rn×n, the transition probability matrix is computed by P = D−1A.

• W(k) is the learnable matrix weight

The hidden representation has the same number of nodes of the initial one X and
the probability is strictly dependent from the input size of the graph. We need

33

something that doesn’t work with adjacency matrix so that the size of the matrix
weights doesn’t depend from the number of nodes in the graph.

The Message Passing (MP) protocol is the first to define a general framework that
poses the fundamentals for spatial-based convolutions. As before, edges are used to
propagate the information, but the main difference with respect to methods that use
the adjacency matrix A is that here we work at the single-edge level. The general
message passing convolution can be expressed [69] as:

h(k)v = Uk(h
(k−1)
v ,

∑
u∈N(v)

Mk(h
(k−1)
v , h(k−1)u , xevu)) (4.6)

where:

• h(k)v is the node features of v at the k-th step of message passing, where h
(0)
v = xv

• Mk(·) is a learnable function that takes into account a single neighbor u of the
node v and the features of the edge linking v with u. The features are taken
from the k − 1-th step.

• Uk(·) is a learnable aggregation function that combines the k− 1-th step infor-
mation of the current node v with all the features coming from the neighbor-
hood (a sum of functions Mk(·).

While not specified in the reference, it should be highlighted that the function that
aggregates the neighborhood information is not fixed (as represented by the sum in
Equation 4.6) but based on the several implementations may differ from formula to
formula. Some of the most used are sum, average and max. Overall, this approach
is a clear framework that works on the local structure and provide the starting point
to build meaningful abstract hidden representation of nodes and graphs.

GraphConv Implementing the idea of MP, the GraphConv layer [70] uses the
edges as a channel into which spread the nodes features: after each convolution step,
nodes have a higher-order meaning due to the weighted aggregation of neighborhood
information. The formula used to compute the hidden representation of the node v
at the k-th step of convolution is:

h(k)v = Θ1h
(k−1)
v +

∑
u∈N (v)

Θ2h
(k−1)
u (4.7)

Weighted sum is chosen as the function Uk in the Equation 4.6 with Θ1 and Θ2 as
parameters, while Mk is a normal sum.

34

While it exploits better the concept of neighborhood compared to spectral ap-
proaches, in this simple definition all the v’s neighbors features are weighted (and so
learned) the same way: the function Mk(·) doesn’t distinguish between nodes, apart
from the edge features that might be unique in the link between v and u.

To broaden the range of capabilities of GNNs, an attention concept has been
delineated, weighting the information of each node based on its importance in the
graph. Graph Attention Network (GAT) [71] exploits the concept of attention to
learn the weight αuv of a connection between two nodes u and v. Attention in
graph is a very powerful mechanism because it enables to specify different weights to
different neighbors without requiring costly matrices operations and with the option
to having a variable number of neighbors. In GAT the convolutional operator is
defined as:

h(k)v = σ(
∑

u∈N(v)∪v

α(k)
vu W(k)h(k−1)u (4.8)

But how is the attention weight defined? For GAT it comes after a softmax operation
over all the connections of the given node v:

a(k)vu = softmax(g(aT [W(k)h(k−1)v ||W(k)h(k−1)u])) (4.9)

where g(·) is the activation function, a is the learnable vector and || is the con-
catenation operator. Using the softmax operation ensure an even distribution of
coefficients all over the neighborhood but favours one connection despite the others
(being weighted very low). This might be not perfect since many connections can
be important, therefore further analysis and evolutions of attention mechanism use
multi-head attention where multiple learnable W matrices are used, allowing multi-
ple subspaces representation at the same time. The multi-head attention concept, in
turn, can be extended more by weighting differently the several subspaces created.

After this broad description of most of the available and used techniques in the
state-of-the-art, we will go into deeper details for some convolutional and pooling
layers that were used for the model proposed in section 6.2.

GATConv Extending the basic functioning of the previous layer, GATConv [71]
uses the attention concept in order to build a self-attentional layer, that is able to
predict/classify even on unseen graphs since it can compute an attention score based
on the neighbors features. The formula used for the convolution is very similar to
Equation 4.7:

h(k)v = αv,vΘ1h
(k−1)
v +

∑
u∈N (v)

αu,vΘ2h
(k−1)
u (4.10)

with the only addition of the attention coefficient α.

35

4.3 Graph pooling layers

Before going into presenting other layers we have to distinguish between the two
main types of graph pooling: fixed and learned. Fixed ones use an algorithm that
doesn’t learn over time: each input instance i is treated the same way, reasoning
only on that instance without learning from already-seen instances i− 1, i− 2, i− 3,
... Instead the learned pooling layers exploits the same basic principles of neural
networks by using matrices, arrays of learnable weights and bias, weighted through
backpropagation.

As with the conventional CNN for images, pooling layers work well when coupled
to convolutions. While increasing the depth of the model (the hidden channels, or
nodes features), we decrease the width (number of nodes) by discarding the less
important nodes: pooling layers enable Graph Convolutional Networks to reason
over groups of nodes with an abstract (hidden) meaning instead of having all the
graph information still divided into the same number of nodes. This layers allow also
the GNNs to be more computational efficient, by discarding (or aggregating) some
of the nodes/edges in the graph, without losing much accuracy and at the same time
generalizing the input (helps in avoiding overfitting).

The first and most simple pooling methods have been introduced by looking at
the ones used for regular 2d data (images). Like in the pooling layers for images,
we have a sliding window of data to take into consideration on which we apply one
aggregation. The main difference here is that 2d data are on a grid, it is then easy
to decide which data are close, and so to be considered in the same window: this
concept is non-existent on unweighted graphs like the one I am working on. In order
to build something meaningful, two main approaches have been used, operating at
different levels of the graph:

• Graph-level pooling layers: The outcome of the pooling is computed on the
whole graph as window of the data. It is easy to apply to any network structure
since you don’t have to provide any additional information: each node belongs
to the same cluster, the whole graph. While it’s easy, it may not be efficient:
a lot of information can be lost and a change of a single node might impact a
lot on the final result, even if the most of the graph is remained the same.

• Cluster-level pooling layers: Nodes are assigned a cluster identifier and then a
pooling is applied independently on each cluster. Compared to the graph-level
pooling this is more resilient to little changes in the graph structure since the
single change in a node it is forwarded only on the respective cluster pooling
outcome. On the contrary there is the unresolved problem of how you do

36

decide, in advance, the belonging of a node to a cluster. To use this pooling
effectively you need to study the structure of the graph in advance and see
whether you can split it into multiple meaningfully clusters.

On top of this definitions max, average and sum pooling have been built: each of
them can be applied at both graph and cluster-level.

An important restriction on the usage of these approaches is that you have to
know in advance the number of clusters you want to split the data in, unless you use
dynamic algorithms that computes the clustering for you. In that case you may have
to pay attention since then the number of output values is variable, meaning that
you might have to tweak your model accordingly. Moreover after the pooling you
don’t have anymore the graph structure that you want because they are not able to
reason over the edges meaning that you can use these poolings only as the last layer,
where you cannot perform anymore graph convolutions.

While this might seem a good idea, we are still not considering so much of the
structure: these poolings focus on the nodes features without considering edges, that
are indeed the useful information that has to be exploited in order to understand
which nodes have to be considered close each other.

One of the most challenging feature of pooling layers for graphs is that we should
keep the structure consistent, with new nodes and edges connected in a meaningful
way. It is easier to reason about discarding some nodes based on the features they
have, but what about the resulting graph without them? What if the new graph now
is not connected anymore? By connected we are referring to an undirected graph
where among each pair of node u, v there is a path that links u and v. Pooling
layers should not only consider nodes features but topology of the graph so that
after having pooled it, it still has a structure that has its own meaning because it
may be the case where a model combines multiple times convolutions and poolings
like they do for images. I will present two pooling layers that are structure-aware to
see how they would like to solve this problem.

EdgePooling EdgePooling [72] belongs to the learned category; it works at edge-
level and keep consistent the structure: while removing edges from the graph, it
collapse the information in a learnable way to a new node. How to decide which
edge (and so the nodes connected by this edge) to collapse? It uses the concept of
edge contraction that is based on scores computed for each edge on the graph: this is
helpful also because it’s a good step towards a meaningful modification of the graph
structure instead of working only on nodes features.

The EdgePooling algorithm (as explained in [72]) is the following: we have the
input graph G = (V,E), each node v ∈ V has f features that are represented

37

in the matrix V ∈ Rv×f . Each edge e ∈ E are a set of directed pairs of nodes
without weights (or features). Edges that has to be contracted are chosen based on a
computed score s. For each edge eij that connects node i to node j, the raw score r
is first computed as a linear combination of the concatenation of the nodes features:

r(eij) = W · (ni || nj) + b (4.11)

where ni and nj are the nodes features, respectively for i and j, W and b are the
learnable parameters. Then, it applies a local softmax normalization on all the
outgoing edges of a node: the final score sij is then the value of softmax adjusted
such that the average of the score range is close to 1 in order to not have numerical
problems during the unpooling procedure.

sij = 0.5 + softmaxr∗j(rij) (4.12)

After this phase we have all the edges in the graph with a score: starting from the
highest-scored one the algorithm contracts each edge that has not a node involved
in another contraction. How does this action work? Starting from two nodes i and
j and the edge between them, we want to build a new structure, that doesn’t differ
much from the previous one by:

• Removing the edge

• Not changing the rest of the graph structure: this means that if i and j have
other edges I should keep them in my collapsed new graph

• Deciding which information has to be kept when merging the two nodes

In order to remove the edge, the algorithm has to remove the two nodes i and j
and create a new node k that inherits all the other edges of i and j. This doesn’t
change the whole graph structure. And about the merge of the information of i and
j in k they found out that a simple sum of the node features works well, simply
multiplied by the edge score:

nk = sij(ni + nj) (4.13)

This also is good in terms of computational complexity, compared to other learned
pooling methods: it is linear in the number of edges. But the most important key
point of EdgePooling is that it is reliable to local changes: since it’s functioning
is local and sparse, a change in a node will reflect to a local change of the graph
structure resulting out from pooling and not in a totally different one. That is
meaningful for our problem because a local change in a molecule may introduce a

38

change in the free energy but it is local to the part of the molecule that changed and
may not influence the whole. At least this happens in simple systems; in complex
ones we have a tertiary structure that is influenced by distant atoms but for that, as
we have already seen, we need additional information.

ASAPooling Most of existing methods fail to capture the graph structure and
are not suitable for large graphs [73]. To overcome these problems, ASAPooling
has been created. It is a sparse method that uses a self-attention network approach,
exploiting the usage of a GNN to compute attention for each node in the given graph.
ASAPooling computes, for each node its cluster assignment, then the clusters are
scored using a GNN. By using a ratio parameter, it chooses only a fraction (the top
scoring) of the available cluster and edges are created among the selected neighboring
clusters. Vertices in a cluster get merged to a single node using an attention sum
(weigthed sum where the attention coefficients are learned based on the feature
values). About cluster assignments: they use a local clustering algorithm [74] which
considers neighbors up to h hops distant.

4.3.1 Graph readout layers

When doing graph-level tasks, the network has to return a single batch of values (c for
c classes or 1 value for prediction), therefore keeping the information distributed in
each node, all over the graph, with an unmodified structure, doesn’t let the network
to have a unified representation of the all graph, which is mandatory to compute the
desired output. To answer this problem there is a category of layers (or functions)
called readout. They are generally defined as learnable (but could be also fixed)
functions R(·) where:

hG = R(h(K)
v |v ∈ G) (4.14)

Two main challenges have to be taken into considerations when speaking about
readout operations on graphs: they must work for graphs with a variable number of
vertices, producing a fixed-size output while being permutation invariant. A readout
layer could be considered as a sort of a pooling method: it has to produce a fixed
representation of the current status of the graph, possibly a condensed one since we
want to group information in the most abstract way to reach then the single value
prediction (or classification).

Two pooling algorithm that can be easily used as readout layers, working at
node-level pooling and so not considering the structure, are the SortPooling [75] and
the TopKPooling [76].

39

The purpose of both the layers is the same: choose the k best (depending on the
implementation) nodes, with k fixed, across the whole graph independently from the
number of nodes in input. The way of choosing the k nodes represents the difference
between the 2 layer implementations. SortPooling is a fixed pooling, it doesn’t have
learnable parameters; its main goal is to sort all n nodes in the graph and then pick
the first k. The sorting operation is done by looking at features values, starting from
the last channel descending, thus, in theory, granting the permutational invariance
property since the order is computed only on features values. TopKPooling instead
is a learnable pooling layer that learns the importance of nodes in the graph (with a
global attention mechanism) and then pick the k most important nodes. Both cannot
be used as intermediate pooling because they don’t preserve the graph structure,
therefore making the successive graph convolutions impossible. That is the main
reason why I put them in the graph readout layers.

Flatten The most simple and less flexible layer of readout is the flatten one: it
flattens the structure by concatening all the nodes features in the graph. With this
method we do not lose information, since all the nodes are used to build the next
layer, but it’s not possible to handle graphs of variables sizes (number of nodes), apart
from using a very raw zero-padding technique. Moreover, it is not order invariant
since the next layer weights will learn the position of the flattened nodes to be
able to learn the importances for the prediction. Practically speaking, this function
doesn’t consider edges at all but only nodes: given a graph, after all the convolutional
and pooling layers, with n vertices and c features each, the resulting output from
the flatten layer would be a one-dimensional vector long n × c coming out from
concatenating the c features of v1, v2, ..., vn vertices.

fG = (h1||h2||...||hn) (4.15)

Others One very simple way to build a good readout function would be to use
a global max/average/sum pooling so that one works at feature-level grouping all
the nodes to be one. It is permutation invariant and with a fixed-size output, but
there is a problem of expressivity: with only one node that sums up all the abstract
meaning of the graph you’ll lose a lot of potential and maybe you’ll need a lot of
features to be able to still do a good prediction.

40

Chapter 5

Dataset

In this chapter I will give a detailed description of all the steps that were accomplished
to produce the dataset used for ML models presented in the upcoming chapters.
The dataset has been built starting from data produced by an in-vacuum MetaD
simulation of alanine aipeptide. The frames extracted from the simulation were
enriched with information found in the force fields and in the topology, both provided
by computational software tools. The JSON format was chosen as file format for the
dataset because of its flexibility and adaptability to different languages.

5.1 Pipeline description

A dataset for a supervised model is composed by a list of instances with the respective
label (target). In the case of the free-energy calculations problem, each instance is
represented by a conformation of the given molecule and the label is the free-energy
value that the conformation has.

The aim is to build a general procedure that starting from a simulation is able to
create a labelled instances, used to form the dataset for the prediction task. While
this procedure is general, thus applicable on any simulation with the same force field,
in this work it has been followed only for our reference molecule, Alanine Dipeptide.

The pipeline is composed by the following, sequential, actions:

1. Creation of the initial Alanine Dipeptide representation

2. in-vacuum Well-tempered MetaDynamics simulation

3. Checks for simulation convergence

4. FES estimation

41

Figure 5.1: Dataset creation pipeline schema

5. Extraction of frames from the trajectory as a list of PDB files

6. Processing of PDB and topology files in order to create a unique JSON file per
frame with all the relevant information

7. Dataset assembling through the association of each frame to a single free-energy
value

Let’s discuss more in detail how this process works.

5.2 Creating Alanine Dipeptide structure

In order to carry on the MetaD simulation, we need to obtain a digital representation
of the Alanine Dipeptide. The most used file format to store molecule information
in the proteins and ligands world is the Protein Data Bank (PDB): a textual format
representing the molecule in its three-dimensional structure.

42

The PDB file has been built from scratch, having in mind the atoms and bonds
that compose the alanine dipeptide, using the Chimera software. Chimera [77] offers
the ability to create, observe, modify and store (as PDB in this case) molecules in
their three-dimensional shapes.

5.2.1 Protein Data Bank file format

CRYST1 0.000 0.000 0.000 90.00 90.00 90.00 P 1 1

ATOM 1 HH31 ACE X 1 -0.991 -3.323 -2.514 0.00 0.00

ATOM 2 CH3 ACE X 1 -1.608 -2.424 -2.530 0.00 0.00

ATOM 3 HH32 ACE X 1 -2.635 -2.731 -2.729 0.00 0.00

ATOM 4 HH33 ACE X 1 -1.254 -1.674 -3.237 0.00 0.00

ATOM 5 C ACE X 1 -1.734 -1.800 -1.208 0.00 0.00

ATOM 6 O ACE X 1 -2.836 -1.472 -0.797 0.00 0.00

ATOM 7 N ALA X 2 -0.616 -1.460 -0.573 0.00 0.00

ATOM 8 H ALA X 2 0.287 -1.485 -1.025 0.00 0.00

...

Figure 5.2: Extract of the hand-crafted Alanine Dipeptide PDB file

The PDB file format is fixed-column delimited: each field has a fixed, maximum
number of characters that can occupy. Based on the first keyword, for each line we
have several different next values.

For the purpose of the work, the useful lines are the ones starting with the keyword
ATOM. Each of them contains the information of a single atom of the conformation
such as:

• Atom serial number

• Atom name

• Residue name

• Chain identifier

• Residue sequence number

• x, y and z relative coordinates in Angstroms

• Occupancy and temperature factor

43

I am not covering the additional information that can be present in each of the ATOM

records because it would be out of the scope of the present work.
The file created in Chimera is very simple and does not contain many PDB

sections which, instead, you may find when visiting rcsb.org looking for complex
proteins. For a detailed documentation of all the sections, one can refer to the PDB
specification website [78].

5.3 Well-tempered MetaDynamics simulation

Starting from the PDB of the Alanine Dipeptide, several tools have been used to run
the simulation and then build the dataset. These are the most used in the Molecular
Dynamics field:

• GROMACS [79] version 2019.4 [80] is a free tool that allows to do Molecular
Dynamics simulations in a high-performant way. It is designed for biochem-
ical molecules like proteins that have a lot of bonded interactions. It has an
excellent support for CUDA devices, helping in the speed up of the process.

• Amber [81] provided libraries and topology files. There we found useful infor-
mation about force field parameters, atomic properties and interactions coef-
ficients such as atom mass, radius, partial charge, Van der Waals coefficients
and so on.

• PLUMED [82] is an open-source, community-developed library that provides a
range of different methods such as enhanced-sampling algorithms, free-energy
methods, tools to analyze the amounts of data produced by MD simulations. It
has been used to modify with additional potential (according to WT method)
the Alanine Dipeptide in vacuum MD simulation.

Since the goal is to estimate the FES of Alanine Dipeptide, we chose a Well-
tempered MetaDynamics as the best method to achieve it because of its ability to
converge to a finite value in the long run (subsection 2.3.1). WT is carried on by
PLUMED while the GROMACS MD simulation is running: every x time steps,
PLUMED will put external bias potential, in the form of Gaussians, which modify
the forces driving the simulation.

5.3.1 Alanine Dipeptide in vacuum

Before going into detail about the important parameters for the WT, the configura-
tion used for the MD simulation is presented.

44

rcsb.org

Steepest Descents converged to Fmax < 1000 in 7 steps

Potential Energy = -6.5387970e+01

Maximum force = 9.7676282e+02 on atom 15

Norm of force = 4.0457389e+02

Figure 5.3: Output of the minimization step

The minimization step has been done using the steep descent method, it stopped
after a few steps because in vacuum the minimization is very quick (no solvent
atoms).

The MD simulation has been carried on for 200ns with a timestep δt = 1fs, using
the leapfrog integration algorithm [83]. The temperature of the system has been set to
300◦K (room temperature) using the Berendsen thermostat [84]. Electrostatic forces
and Van der Waals interactions, given n atoms in the system, have a computational
complexity of O(n2). For larger systems there is the need of introducing cut-off
schemes which avoid computing interactions between distant atoms, allowing to bring
the complexity down toO(nlog(n)), like particle mesh Ewald summation method [85].
In our case, no cut-off for the atom-to-atom interactions has been used because, being
an in vacuum simulation, the system is composed only from the main molecule atoms
(no solvent), thus computing all the paired interactions it is still fast in absolute
timing. The choice of a good timestep δt is important because by its value depends
the accuracy of the integration of the forces. The smaller δt is, the more precise (with
less risk of computing too strong forces) and the slower (more frequent computations)
the simulation is.

As we have seen in subsection 2.3.1, the WT, using a reference temperature, adds
external bias in form of Gaussians. The height of the wells decrease over time and
based on the frequently visited CVs values. How do we select the most useful CVs?
Which could be a good value for the initial height? and what about σi, the width
per CV? After how many steps a new Gaussian should be put?
For the Alanine Dipeptide, as papers in literature suggest [50], we considered the
two central dihedrals, phi (φ) and psi (ψ), as the CVs. The selection of the others
hyperparameters influences the data we will obtain from the simulation. If a tall
Gaussian is chosen, the FES wells will be filled very quickly but not in an uniform
way: there would be a lot of spikes and new small imperfections on the surface.
In the case of small initial Gaussian instead, the additional bias may not cover the
whole FES, thus reporting converged, but not complete simulation data. In the case
of the width’s choice, a large Gaussian will not capture all the minima characteristics
because it will cover them straight away; on the contrary with a narrow one we are

45

very precise but also slow. It is worth noting also, how a low biasfactor, may not
give enough power to overcome barriers, thus our simulation might converge, but too
early. The term biasfactor refers to what it’s used in PLUMED as:

γ =
T + ∆T

T
(5.1)

which is the ratio between the temperature of the CVs T + ∆T and the system
temperature T .

A good estimate of the σi widths has been chosen as the standard deviation
(divided by 2) of the 2 unbiased CVs in a very short MD run (100ps).

Figure 5.4: Phi and Psi oscillation in the micro MD run

The standard deviation on CVs has been computed after the first 20ps, so as to
consider measurings only when the molecule was stable in the minimum (as shown
in Figure 5.4).

While the simulation is running PLUMED keeps appending information to the
log file. This allow an early analysis of the CVs selected to make decisions during the
run without waiting the end. One could launch a simulation with a very high time
limit and then stop it after a while if he sees that it reached convergence. How
does one check for convergence? What does it mean that the simulation converge?
The concept of real convergence is broad [86]: one can only do some checks that
suggest the system has reached it. When using Well-Tempered MetaDynamics, only
the regions of the FES where the temperature of the CV reach at most T + ∆T are
visited. This is a consequence of the formula that computes the dynamic height of

46

Force field Amber99sb-ildn

δt 1 fs

Time limit 200 ns

W 1.0 kJ/mol

σφ 0.05

σψ 0.12

γ (biasfactor) 10

pace 500

Table 5.1: Summary of the parameters used both for MD and WT simulation

the Gaussian. At convergence, we have a situation where all the feasible regions are
covered and the additional bias plus the FES forms a flat surface. A non-converged
simulation produces FES values that are not reliable, therefore several checks have
been employed:

• Difference of energy between two minima (Figure 5.5) needs to remain stable,
converging to a finite value. This because, at convergence, adding a Gaussian
on a minimum creates a small imbalance which is compensated after a short
time by another Gaussian in the other minimum.

Figure 5.5: Free energy difference overtime between the two basins

• The system should sample in a semi-diffusive way the CVs phase space, keeping

47

in mind that a converged simulation explores most of the CVs space apart from
the unfeasible conformations.

Figure 5.6: φ, ψ values in the last 20ns of the simulation. Each point belongs to a
sampled conformation over time. Towards the end the CVs fluctuate quicker.

• FES reconstruction (Figure 5.7) over time helps in visualizing how much the
free-energy is changing during the simulation time: the more we go towards
convergence, the more the FES doesn’t change apart from a constant offset
because we are adding a small (given the small Gaussian height) layer all over
the flat surface.

• Gaussians height goes towards 0 at convergence.

Figure 5.8: Gaussian dynamic heights over time

48

Figure 5.7: Free energy reconstruction overtime

Now that we are sure that this simulation was at convergence, we know that
FES estimation in function of the two selected CVs will be reliable. While doing
the simulation, PLUMED wrote a HILLS file containing all the Gaussians deposited
over time with the corresponding CVs values where they have been added to. We
know that the FES is the complement of the sum of the external potential so we can
compute it very easily (PLUMED comes in help with the sum hills command).

49

Figure 5.9: Final FES of the converged WT simulation of in-vacuum Alanine Dipep-
tide as function of φ and ψ

Figure 5.10: Final FES of the converged WT simulation of in-vacuum Alanine Dipep-
tide only represented as function of one CV: φ

The FES is stored in a columnar file with 3 fields: φ, ψ and the corresponding
free energy. This is used to assign a value to each of the trajectory’s frames.

A graphical FES, computed from the MetaD simulation, is shown in Figure 5.9
and Figure 5.10, respectively in 2 and 1 dimension.

50

(a) FES in literature [87] (b) Our simulation FES

Figure 5.11: Comparison between literature and computed FES

5.4 Dataset creation

Having in mind the goal of training a NN to predict the FES of the Alanine Dipeptide,
we have to build our dataset accordingly. Each dataset’s instance is represented by
a snapshot (frame) of the system at a certain time, labelled with the corresponding
FES value. Since the FES obtained from the simulation is represented as a discrete
function of the two dihedrals, to assign to each frame a value we have to choose the
closest pair of φ and ψ in the FES domain. It means that two frames with similar
(but different) value of φ and ψ might have the same closest point, and so, the same
free energy label.

The simulation produced 400′000 snapshots of the system (in the PDB format),
one every 5 ps. We decided to select 50′000 among the total because the process of
converting them to a better format, readable by the ML algorithm, and the training
itself of the model would waste a lot of time and computational resources.

The goal is to include every meaningful detail of the conformation in a JSON file
(the instance) to be able to have a 1-to-1 representation which can be converted again
to a PDB file in case. The algorithm take as input a PDB file, the conformation,
producing a JSON file with the enriched data, ready to use.

The easiest way to deal with PDB files was by using the BioPandas [88] li-
brary that offers out-of-the-box parsing, error support and conversion to Pandas [89]
dataframe. Based on the atoms name, I enriched their properties with atom radius,
mass and partial charge found with the help of supplementary libraries file from
Amber (force field, topology).

51

The detailed content of each frame’s JSON can be so summarized for a given a
molecule with n atoms:

• For each atom ai, i ∈ [0, n): mass, radius, partial charge and x, y, z coordinates.

• A n× n bonds matrix:

bi,j =

{
1 if ai has a covalent bond with aj

0 otherwise
(5.2)

The matrix is symmetric by construction.

• For each planar angle pi: the tuple of indexes of the a atoms array, named j,
k, l, and the angle value.

• For each dihedral di: the tuple of indexes of the a atoms array, named j, k, l,
m, and the dihedral value.

• A n× n non-bonded coulomb electrostatic matrix:

ci,j =



0 if ai in range 1-2 and 1-3 with aj

1

cmi,j

· chi · chj
d(i, j)

if ai in range 1-4 with aj

chi · chj
d(i, j)

otherwise

(5.3)

where:

– cmi,j is the multiplier used in the force field by Amber

– chi and chj are the partial charges of ai and aj

– d(i, j) is the physical distance between the atoms ai and aj

The matrix is symmetric by construction.

• A n× n non-bonded Van der Waals interactions matrix:

wi,j =



0 if ai in range 1-2 and 1-3 with aj

1

wmi,j

·
(

Ci,j
d(i, j)12

− Ci,j
d(i, j)6

)
if ai in range 1-4 with aj

Ci,j
d(i, j)12

− Ci,j
d(i, j)6

otherwise

(5.4)
where:

52

– wmi,j is the multiplier used in the force field by Amber

– Ci,j is a coefficient used to compute Lennard Jones potential and depends
on pairs of atom types (A full description can be find at [25], equation
5.117).

– d(i, j) is the physical distance between the atoms ai and aj

The matrix is symmetric by construction.

Each file is named with a number, which will be used to index the free energy value
in the target file.

The complete list of JSON files is then saved in an appropriate folder. For each
frame, the closest, in terms of φ and ψ, free energy value is chosen and saved in the
target file. This file is just a list of values, referenced by the frame number (contained
in the filename).

53

Chapter 6

Methods

In this chapter a description of the reasoning behind the modeling choices is given
with a focus on how several representation and implementations may be suited for
the free-energy prediction task.

The goal of this work is to build a NN that is able to predict the free energy
of alanine dipeptide conformations, with a reusable and extensible approach. This
means that the model should rely on the structure of the molecular representation
and not on only its finite number of parameters. Exploiting the structure could
help in the training and open the way towards more complex approaches in which
different molecules are fed into the NN. Future extensions could bring the model to
the prediction of molecules not present in the training set.

In order to reach such goal we have to make some initial considerations and define
the problem statement.

Problem statement Given a conformation, the model has to predict its free-
energy value coming from a converged simulation. The free-energy value of a confor-
mation c is nothing but the difference between it and cm, where cm is the conformation
with minimum free-energy value of the system:

∆G = G(c)−G(cm) (6.1)

where G(cm) = 0. ∆G ∈ R, thus we are facing a regression task, for which a NN will
be used.

In the previous chapter we tackled the problem of creating a dataset starting
from a simulation trajectory but we didn’t put the focus on the important questions
that will make us understanding better the problem of estimating the free-energy:

• How do we represent a molecule?

54

• Which is the important information contained in each frame c that describes
G(c)?

• What should be used as input of the NN?

While answering the questions, I will outline also how the choice of the molecule
representation heavily influenced the input features for the NN and vice versa.

6.1 Molecular abstract representation

Being able to build a network that exploits the structure of the molecule to find
insights about the FES is a key point because it leads to some important progress
towards the generalization of the model:

• A general model doesn’t rely on a fixed number of inputs, therefore enables
training on different molecules.

• Testing the model on a new, unseen molecule, chemically similar to one seen by
the model in the training set, could give us preliminar insights without doing
the full MetaDynamics simulation.

Given the diversity of molecular information to be modelled, we identified several
candidate design choices:

• Use a single, large, graph:

– Atoms, with their properties, are modelled as vertices;

– Two category of different edges model all the atom-to-atom relationships:
unweighted for bonds (or weighted 1s and 0s), weighted for Van der Waals
and electrostatic interactions;

– How do we model the information that is in angles and dihedrals? The
only possible way to include this into the single graph is by adding addi-
tional set of vertices. These, as opposed to atoms, have only one feature,
the angle value, and they will be connected to the atoms they are in
relationship with.

• Using a cluster of graphs. We may use one graph for each purpose, in order to
have a molecule that is described in its entirety by several sub structures:

1. One graph for each kind of atomic interactions:

55

– Bonds

– Van der Waals

– Electrostatic

2. For dihedrals and angles, the single atom cannot be modelled as vertex.
Modeling tuples of atoms instead could be a solution, the angle then is
the relationship between two tuples of atoms (e.g. an angle ABC is the
edge that connect AB to BC).

• Using hypergraphs (subsection 6.1.1). This design choice seems to be most
suitable: hypergraphs let you define sets of relationships between a number of
nodes that is ≥ 2. Perfect for our use case (with angles and dihedrals).

• Discarding less important categories of data in order to have a single graph. The
molecule is described by all these different concepts, but do we need them all
to do the FES prediction? We might understand first what is, for the selected
dataset instances, the important information that enable us to predict, with a
certain accuracy, the free energy value.

The single graph might include everything, but we have a very complex structure:
different types of vertices and edges, both with or without features.

The cluster of graphs might be optimal if we plan to handle each single graph in
a different way (given their differences in terms of features). What might be difficult
is that we have to converge and return a single value from the whole cluster.

Given these limitations on the former approaches, we decided to focus on hyper-
graphs and custom alternative solutions (which model relevant information only).

6.1.1 Hypergraph

An hypergraph [90] is a pair G = (V,E) with |V | = N vertices and |E| = M hyper-
edges. Each hyperedge e ∈ E is a set that has its own cardinality ≥ 2. Hyperedges
represent the important difference between graph and hypergraphs: while in a graph
an edge has fixed cardinality of 2, an hyperedge goes beyond that.

For the single conformation, defining what are the main components of the hy-
pergraph it’s straightforward:

• Vertices denotes atoms and all their properties

• Each atom-to-atom interaction (bonds, Coulomb, Van der Waals) is repre-
sented by a set of weighted hyperedges of cardinality 2

56

• Planar angles are modelled as a set of weighted hyperedges of cardinality 3

• Dihedrals are modelled as a set of weighted hyperedges of cardinality 4

H C

H

H

C

O

N

H

Figure 6.1: Simplified hypergraph representation of a portion of Alanine Dipeptide.
In purple a planar angle, hyperedge of cardinality 3. In red a torsional angle, hyper-
edge of cardinality 4.

Even if this representation seems the most suitable, it is difficult to work with
because of the lack of NN convolutions and pooling layers implementation (such as
[90]). The main limitation is that the information needed to predict the alanine
dipeptide relies on dihedrals values, which are modelled as hyperedge features. All
the implementations of hypergraph convolutions consider edges only as a way of
spreading the information (through the Message Passing protocol seen in chapter 4),
thus making it impossible for the hyperedge features to be used as key information
for the regression task.

6.1.2 Dihedrals overlap graph

All the previous solutions take into account every single molecular property, but
are all of them needed to predict the FES? Since, by construction, the simulation
estimated the FES in function of φ and ψ, we should build a representation around
the dihedrals concept. Modeling them as vertices of the graph, is important if we
want to exploit existing convolutional layers, since they work by propagating the
node information with the neighborhood, with very little attention instead to edges
weights (or features).

How can we use this assumption to build a graph structure with dihedrals in
mind? The intuition comes from the overlap graphs, very common in bioinformatics
[91, 92].

57

Figure 6.2: Resulting overlap dihedrals graph of 6 connected atoms, in a linear
structure.

In graph theory, an overlap - or De Bruijn [93] - graph is a structure representing
overlaps between sequences. Any node in the graph represents a fixed-length (n)
subsequence and it is connected to another if they share n−1 consecutive characters.

Even though graphs are not modellable as plain sequences, we might exploit this
representation to build an unweighted overlap graph (Figure 6.4) where:

• Dihedrals, written as an ordered sequence of atoms identifiers, are the vertices
of the graph

• Two dihedrals are linked by an edge if they overlap 3 atoms.

One may want to connect dihedrals more ”distant” (with only 2 overlapping atoms),
but to do that we should introduce edge weights, that for now are avoided. The
reason behind this design choice is that we want to keep the model as simple as
possible. However, the expressivity of the unweighted graph is the same as the
weighted one. Indeed, we are still able to represent the connection between dihedrals
with 2 overlapping atoms with a 2-hops path.

One undesired effect of this representation is that two dihedrals on the same
bond are 1-hop distant, the same happens with two adjacent dihedrals (on different
bonds). To explain better, in Figure 6.3 orange and green represent the information
of the same dihedral (the torsion is on the bond between C1 and C2); the yellow
instead is a different one. In the final overlap graph, though, you cannot tell the
difference since they are 3 different nodes, each of them 1-hop distant.

The dihedrals overlap graph is not extensible to other type of molecular infor-
mation. For a simple system as alanine dipeptide, the FES is well described by the
backbone dihedrals. However, one should note that if more complex systems are
investigated, additional data should be provided and modelled (i.e., the interatomic
interactions).

6.1.3 Simplified dihedrals overlap graph

The previous representation design was driven by the fact that each tuple of 4 atoms
is considered an independent dihedral.

58

(d) Resulting dihedrals overlap graph

Figure 6.3: Example of 3 dihedrals overlap graph representation

With a different point of view, we might observe that when the torsion on a
bond change, all of the 4-atoms dihedrals on that bond change accordingly by the
same shift. Therefore, starting from one torsional value we can derive others by
adding, or subtracting the shift occurred. This means that the information from
having multiple 4-atoms dihedrals representing the same torsion could be discarded
in advance. Therefore each bond, on which a torsion occur, is represented by just
one value instead of multiple. While simplifying the graph, by removing vertices and
edges, we are also solving the inconsistency outlined in Figure 6.3. So, for each tuple
of 4 atoms, we consider only the 2 central ones as representative of the torsional.

The analogous graph now becomes made up of:

• Central pair of atoms that represents the dihedrals as vertices.

• If two vertexes share one atom, we draw an edge.

In this case we scaled down the complexity of the alanine dipeptide to a very simple
graph composed by 7 nodes and 7 edges (Figure 6.5).

While the structure is very simple and plain for this molecule, it may expand a
lot for more complex ones.

59

Figure 6.4: The Alanine Dipeptide dihedrals overlap resulting graph

6.1.4 Angular value encoding

Angles (and dihedrals) computed from the MD simulation’s data are expressed in
the plain angle’s domain, from −180 to 180. What is worth noting is that the
neural network doesn’t know the concept of periodicity and we would like to find a
representation where a small shift in the angle value is reflected by a small shift in
the represented values. This is offered by the sin and cos angle decomposition. For
each angle, we use its sin and cos components to encode it, these two values will
change smoothly in case there is a shift.

To understand the difference in a more clear way, an example is provided. Given
2 angles, α and β, measuring, in degrees, −175 and 175 respectively; if we encode
their values with the plain degrees number they will be at the opposite ends of
their domain (i.e. [−180; 180)). If we encode them using sin/cos decomposition,
α = (−1−, 0−) and β = (−1−, 0+) which are very close in their domain (i.e. the
circonference of radius 1 with the center in (0, 0)). The example is shown also in
Figure 6.6.

6.2 Model architectures

When using ML to solve molecular problems, we know in advance most of the sev-
eral physical laws that govern them, thus we know what constraints the predictions
have to respect. In the case of predicting distances between atoms, we know that

60

(a) Input (b) Output

Figure 6.5: Simplified representation take into account the uniqueness of dihedrals

the prediction should be a positive number; if we shuffle the two atoms, the predic-
tion should be the same since the distance is a symmetric function. When dealing
with these kind of properties, either we build them into the model, or we use data
augmentation. The former is the optimal approach and it is what we tried to pursue.

We are looking for a model that is able to ingest data coming from different
molecules, which means different number of atoms, angles, dihedrals, etc. Abstract-
ing the high-level features of the conformations in order to predict the FES is the
key to build a performant model. That’s why our focus moved to GNN, which offers
the powerful convolutional filters while dealing with non-Euclidean data.

Designing a GNN has to consider the properties that should hold for graphs:

• They are unordered structures, thus the network should not learn the order of
nodes given as input but should be permutation invariant.

• They may vary in sizes: the network should be general enough to accomplish
the task if graphs with different number of nodes are fed.

• The computational complexity should not be very high: our end goal is to use
this on proteins with hundreds (or thousands) of values.

The upcoming architectures consider the GNN layers that have been explained
in chapter 4.

The general architecture of the network is the following:

• An initial module which stacks spatial convolutions to propagate the informa-
tion in a learnable way through the structure;

• An intermediate pooling to focus on a relevant portion of the graph;

61

(a) Plain angle (b) Sin and cos decomposition

Figure 6.6: Distance between α and β angles, on the 2 different domains.

• A readout function/layer that removes the graph structure;

• A final block that group the abstract features and outputs a single value.

On top of this, several models have been built and analyzed. The general structure
has been designed empirically and by having the graph properties in mind, while the
hyperparameters such as learning rate, number and channels depth of layers have
been selected by using an hyperparameter optimization framework, namely Optuna
for PyTorch [94].

The initial module is shared among all the models and it is pretty simple. It is
composed by a number of convolutional layers with an incremental number of hidden
channels layer after layer. While there are a lot of different convolutional operators
that we could have taken into consideration, for a simple and almost linear structure,
we chose GraphConv and GATConv for comparison. The only difference between
them is that GATConv implements an attention mechanism, but for the problem
we are considering it has not been useful, worsening the prediction compared to the
GraphConv one. The choice of stacking several convolutional layers comes from the
fact that after each convolution, the information is propagated to a distance of one
hop only. In conventional feature maps for Euclidean data instead, usually you can
select the desired size of the window, making it a bit more flexible.

62

6.2.1 Flatten model

The most simple model we realized represents the first meaningful milestone: a
number of convolutional layers, of different size, followed by a readout layer that
flattens out the graph structure, concatenating nodes features in the input order.

Optuna found, as the best configuration, the combination of 4 GraphConv layers
with the GELU activation function. This means that the attention concept, provided
instead by GATConv, is not helpful in this context.

(a) Flatten (b) C&P

Figure 6.7: NN model architectures. After the hyphen, the number of hidden chan-
nels for convolutions

63

Flatten limitations

Given as output the one-dimensional vector (section 4.3.1) of size n × c, with n
number of vertices and c number of nodes features after the convolutions, the output
of the network is directly dependent on the graph’s size. This means it can only
process graphs of size n. This model is not permutation-invariant since the readout
is just placing, side by side, node after node. The final block will learn the order
of flattened vertices (therefore learning the weights based on the node ordering, not
only on the features).

It is a very constrained model that works only for the selected molecule and it
has been built and tested for comparison with baseline models.

6.2.2 Convolutions and pooling model

In order to generalize the model to ingest several molecules of different size, we
needed to abstract more the simple flatten model by introducing some pooling after
the convolutions and changing the readout layer to something that is more flexible.

This model has been thought with large graphs in mind: I built a block of convo-
lutions and pooling in order to downsample big graphs to a manageable size (com-
putationally speaking) that can be used, if the graph is still too large, in a iterative
way. Then convolute again to distribute knowledge between pooled nodes and finally
a global pooling layer to return a fixed-size one-dimensional vector that is able to
generalize over different sizes of pooled graphs.

By using the EdgePooling layer (section 4.3) iteratively, after each pooling we’ll
have ∼50% of the nodes pooled while maintaining the ideal graph structure, an
efficient way to trim down the graph size. In addition, we can on-the-fly choose if
using a combination of EdgePooling and GraphConv when the graph size is above a
certain threshold before the last pooling/readout.

The global pooling methods/readouts that have been considered in the design of
this are: SortPooling, Max/Average cluster pool and TopKPooling.

6.3 Baseline models

In order to assess the performance of a model and compare it, we need to find a
baseline. Since doing the regression task of the FES of molecules is a new topic,
we built a baseline model that has in mind the goal of providing the best result
possible without taking into consideration the molecular structure. In simple words,

64

we would like to train a model by passing all the information we have, side by side,
without telling the model that this information is organized in a structure.

This is done because, when building a representation that in our opinion is rea-
sonable, we’d have to test it against the ”no-structure” model to see if passing the
structure to the model is improving our results, so that we can draw some conclusions
from it.

While not considering the structure, we identified 2 subsets of ”baseline” models
composed of fully-connected layers:

• Flat models, involving up to 1 hidden layer, very simple and straightforward.
The one used for the evaluation comparison has the hidden layer composed by
512 nodes.

• Deep models, involving a number of hidden layers with increased width and
depth. The one used for the evaluation comparison has 4 hidden layers with
size 65, 340, 441 and 197 respectively. The size of the hidden layers has been
chosen through the usage of Optuna.

Both of these groups of models, useful for comparison with more complex ones,
have one critical limitation: the input size is fixed. It is not possible, unless of
weird padding, to provide several molecules as training because the number of input
parameters is not variable. That means, in very simple words, that if we add/remove
an atom from the current alanine dipeptide, these models are not able to provide an
answer because of size mismatch (an error will be generated).

65

Chapter 7

Results and discussions

In this chapter I will present results on various prediction tasks, comparing them
among different models, representations and datasets.

All the results are presented as an average of 5 independent and randomized runs,
with the respective standard deviation. While 5 is not a number that is statistically
relevant, it allows to qualitatively discern if the obtained results are consistent or not.
Doing more than 5 runs would have been very computationally expensive, considering
all the tasks that have been undertaken. Each of the run has been stopped using the
early stopping mechanism with patience set as 30 epochs.

If not specified differently, the runs were organized using 5000 random frames
from the full dataset as training, 5000 frames as validation and the rest 40000 frames
were used as test. The input data, target included, have been normalized with µ = 0
mean and σ = 1 standard deviation. The limited number of training frames has been
chosen to speed up the training while not losing much performance. In a following
section, a comparison between prediction error with different number of frames is
given.

The metric I used to assess the performance is the Root Mean Squared Error
(RMSE), based on its unit measure. Maintaining the unit of the computed property
(i.e., kJ/mol since we are dealing with free energy), it is possible to assess the
accuracy of the method and compare it with the state-of-the-art techniques employed
to estimate the free-energy difference of processes and with the intrinsic precision of
current force fields, estimated in the range of around 1 kcal/mol (1cal = 4.184J).
Thus, models that predict in the 1kcal error range are considered performant.

Moreover, the outliers predictions weigh more with RMSE: if we have a big pre-
diction error, the square will consider it more than a simple average (like in MAE).
The required model should be able to predict all of the states (high or low-energetic)

66

with an acceptable confidence, thus emphasizing bad predictions will make the overall
prediction worse.

7.1 Alanine dipeptide FES prediction

The main goal of the aforementioned methods is the accurate prediction of free-energy
values starting from MD simulation poses. As previously mentioned, we selected the
alanine dipeptide as a benchmark system and we employed a Graph Convolutional
Network. Given that the peptide is expressed in function of 2 dihedrals, it is the
perfect starting point for the development of the model (as outlined from the baseline
models results). Various tasks have been performed, with different models, in order
to compare the properties and the prediction accuracies.

A short list of the employed architectures, with respective references to the sec-
tions where they are described, is reported below:

• Flat and deep baseline models (section 6.3)

• Flatten model (subsection 6.2.1)

• Convolutions and Pooling (C&P) (subsection 6.2.2) models with different final
pooling layer: SortPooling, TopKPooling, Cluster/Global Max/Average.

Whole FES prediction As the first evaluation task, the models performances
have been compared on the prediction of the free-energy value of the conformations
belonging to the test set. Only the best configuration for each category of the model
have been considered. In the case of C&P model, the one who has clustered max
pooling with 3 final clusters has been chosen; instead, for the others the configurations
are the ones presented in their respective sections.

RMSE # epochs

Flat baseline 2.25 pm 0.33 66.6 pm 17.1

Deep baseline 0.94 pm 0.14 76.8 pm 14.5

Flatten 1.04 pm 0.05 183.8 pm 22.0

C&P - Max 1.30 pm 0.11 162.4 pm 32.7

Table 7.1: Comparison among baseline and graph convolutional models predictions

67

Given the test set predictions, it is possible to interpolate the values to obtain
a reconstruction of the FES from the trained model. In Figure 7.1 the predicted
FES follows the shape of the original one. The errors have been plotted (Figure 7.2)
in function of φ and ψ to highlight which conformations have the worst prediction.
Apart from the high-energetic conformations where φ ∼= 0 and ψ ∼= −π where
the error is higher, the other conformations were predicted remarkably well, with an
error < 2kJ/mol.

(a) Original FES from the MD simulation
(integration of 50k frames)

(b) Reconstructed FES from Flatten model
predictions on test set (interpolation of 40k
frames)

Figure 7.1: Comparison between the FES computed by MetaD (a) and FES inter-
polated from the model (b).

As shown in Figure 7.1 and Figure 7.2, most of the errors are located in high-
energetic conformations. This finding is confirmed by looking at the correlation
between target and prediction, on a free-energy value scale (Figure 7.3). A possible
explanation is the different density of input frames along the CVs domain. High
energy conformations are not easily populated by the molecule, thus bigger uncer-
tainties are to be expected for states not well-represented in the training set.

7.1.1 C&P final poolings

Since the flatten model has limited applicability (only to the same molecule, same
number of dihedrals), as outlined in section 6.2.1, the C&P model have been built
and tested with different final poolings in order to understand which is the most
suitable for the task at hand. Among TopKPooling, SortPooling and the clustered
Max/Average, the most succesful ones are the clustered poolings (Table 7.2).

68

Figure 7.2: Prediction error, of Flatten model, in function of φ and ψ

RMSE # epochs

TopKPooling 10.44 ± 0.09 76.0 ± 15.6

SortPooling 10.54 ± 0.08 105.0 ± 27.0

Cluster Max 1.30 ± 0.11 162.4 ± 32.7

Cluster Avg 1.53 ± 0.13 132.4 ± 35.5

Table 7.2: Comparison among final pooling layers in the C&P model

Among all the tried global poolings, no permutational invariant one has been
able to give good performance. This probably happens because either they are not
suited for the problem or they trim down too much the information needed to give
a good estimate (in case of single-cluster pooling).

7.1.2 Different number of training frames

The number of ideal training frames, set to 5000, has been chosen as a compromise
between training speed and accuracy. In Figure 7.4 the reader has an overview on
prediction RMSE of trained models with several number. Moreover, it highlights
how different representations behave based on the number of frames they have been
trained with.

69

Figure 7.3: Correlation between prediction and target on the free-energy scale

7.2 Comparison among different angular represen-

tations

As outlined in subsection 6.1.4, various calculations have been performed in order to
understand which dihedral representation, between sin/cos and plain angle value, is
better suited for the NN in terms of speed of convergence and prediction error.

The model used as reference of comparison is the Flatten one (described in sec-
tion 4.3.1) and the results achieved are summarized in the table Table 7.3.

RMSE # epochs

sin/cos 1.04 ± 0.05 183.8 ± 22.0

plain 1.26 ± 0.12 288.6 ± 64.6

Table 7.3: Prediction on alanine dipeptide with different angular representation

Results speak for themselves: we have a clear improvement in the convergence
speed and a slightly better and more consistent prediction over the 5 runs for the
sin/cos representation. This suggests that explicitly decomposing the angle as a pair
of sin/cos values improves both the process of training and the overall performance.

70

Figure 7.4: Comparison among different representations and different number of
frames. Black lines represents the standard deviation interval

7.3 Comparison among different molecule repre-

sentations

Representing the molecule as a dihedrals overlap graph leads to two different struc-
tures: the full one, using all possible 4 atoms combination to define all existent
dihedrals in the molecule, and the simplified version, in which only a representative
of a group of dihedral existing on the same bond is selected. The runs have been
using the sin/cos as angular representation. A comparison has been done on the
speed of convergence and on the prediction difference, leading to these results:

RMSE # epochs

full 1.32 ± 0.17 231.0 ± 31.2

simplified 1.04 ± 0.05 183.8 ± 22.0

Table 7.4: Prediction on alanine dipeptide with different overlap graphs representa-
tions

As it is possible to observe, these results are useful to understand that with
the simplified version we earn in terms of convergence speed and slightly even in
predictions. Therefore, the combination between sin/cos and simplified dihedrals

71

representation is working better than the full one.

7.4 Shuffling the nodes

One important property that should distinguish graph neural networks from images
ones is the permutational invariance.

The end goal is to build a model that learns only the graph features and topology,
not the order of the nodes in the nodes features matrix. To assess if the built models
respect the permutation invariance property, it should be checked that every layer
is invariant. Moreover we can experimentally check this by shuffling the rows of the
nodes features matrix before training (updating the edges accordingly).

The only models that hold the permutation invariance are the ones who have
the global max/average pooling (i.e., with only one cluster) and the ones who use
TopKPooling or SortPooling as final/readout layer. The predictions of these models
unfortunately are not performant (Table 7.2) as we would like to, but this could be
due to the specificity of the dataset describing only a single simulation, thus not
providing enough data samples to train from.

7.5 Prediction on unseen minima

Given that MD simulations take a very long time to explore the entire combination
of states promoted by slow degrees of freedom, it is possible that scientists explore
only a selection of states, instead of the entire picture. Hysteresis problem might
cause incomplete sampling and thus non-converged results. One interesting direction
that could be explored is to train the model in order to predict unseen FES regions
Figure 7.5.

In order to tackle this different problem, the dataset have been split (as in Fig-
ure 7.6) by removing from the training set all poses belonging to the minimum at
φ ∼ 1 and ψ ∼ −1. The removed frames were successively used as test set Figure 7.7.

Interestingly, the model predicted the presence of a minimum in 3 cases out 5
replicas (with ∼ 4 kJ/mol RMSE). Having only one simulation in the dataset is
surely not enough for the model to generalize and predict unseen regions, thus the
achieved results might be the product of a good interpolation.

72

Figure 7.5: In red a portion of FES representing a local minimum that we would like
to predict without training

(a) Training set (b) Test set

Figure 7.6: Unseen region dataset

7.6 Prediction on both the representations

To assess the model’s ability to train on different graph sizes, it was tested on both
the overlap graph representations described in subsection 6.1.2 and subsection 6.1.3,
respectively.

73

RMSE # epochs

C&P - Max 1.44 ± 0.01 195.0 ± 10.4

C&P - Avg 1.62 ± 0.03 150.3 ± 16.4

Table 7.5: Both representation training

Figure 7.7: 5-run results of predictions on unseen minima

74

Chapter 8

Conclusions and future work

In this chapter, I will first discuss about the main outcomes of the my thesis work
with the methods used and analyzed in the previous chapters. Then, an highlight
about the directions that the project should follow in future is given.

As outlined in the ”Results” chapter, we have been able to build a model which:

• Predicts with a very good grade of accuracy (< 0.5 kcal/mol) the alanine
dipeptide FES starting from a limited number of trajectory’s frames

• Provides a successful graph molecular representation to produce predictions,
focusing only on some specific, relevant information;

• Is able to train on graph of different sizes (as shown in section 7.6), thus ready
to be expanded towards more complex systems;

• Keeps complexity as low as possible. EdgePooling (section 4.3) is linear in the
number of edges, GraphConv too;

• Is able to predict - albeit in all the cases - the presence of a minima without
being trained on conformations belonging to that minima.

We proved also that choosing the right representation, both for the molecule and
the angles value, gives relevant benefits:

• With the simplified dihedrals overlap graph. The needed number of train-
ing conformations in order to have a good prediction is reduced significantly
(Figure 7.4);

• By using the sine and cosine decomposition. There is a consistent improvement
in the training speed (Table 7.3).

75

The results obtained with the baseline models outline that the prediction of the
alanine dipeptide’s FES is a simple task once you have clear what is the important
information to model. However, it is worth noting that the ”deep baseline model”,
the best performing one, is more prone to overfitting due to the very large number
of parameters (> 200′000).

Despite the promising results, the C&P model has some limitations that open
the door to further investigations to improve the model. Among these:

• The final readout layer is not permutation-invariant, thus if we shuffle the
order of the nodes, the NN is not able to predict with a good accuracy. All
the trials with permutational invariant readout layers haven’t reported good
performance;

• It models only molecule’s dihedrals. Other information (i.e. interatomic in-
teractions) is needed when studying more complex systems. With the current
dihedrals overlap graph, this cannot be added in a straightforward way.

We point out that the importance of this work doesn’t come solely in the predic-
tion accuracy, but also in the approach towards the generalization of the free-energy
calculations which represents a stepping stone towards more complex and different
problems. The model could be reused for other task, such as transfer learning [95],
where the knowledge gained in the free-energy prediction of a molecule could be
stored and used for other molecules. Or the prediction of unseen regions of the FES
could be studied close up and could be improved with additional data. In the next
section, more detailed extensions that should be addressed to improve the model and
to explore more the free-energy calculations field are reported.

8.1 Future work

Permutation invariant readout The missing block of the current best model is
that the final layer learns the order of the abstract high-level representations. While
this does not bias the calculation (the model is still able to train and learn), it
represents a limitation since graphs should not have an intrinsic order and therefore
the NN should not predict based on it. There have been many trials towards the
building and the selection of a readout layer of this kind, with no good performance.
There is room for improvement, also considering the attention dedicated to this
topic in literature [96]. A review on deep learning for graphs [97] suggests also the
possibility to use stacked fully-connected layers as final output module. While this
could help since various weights can be learned for a single node, it doesn’t guarantee

76

the order invariance. The same has been proposed as a universal readout function
for graphs [96].

Hypergraph neural network Modeling the molecule through the hypergraph
solution is needed in order to consider different kind of molecular information in the
same, single structure. I personally think that this could be the most useful approach,
but also the hardest one. While building a properly functioning hypergraph for
biomolecules could be very challenging - especially considering the novelty of this
topic and the scarse literature [90] - going beyond the dihedrals-only representation
is mandatory when dealing with larger molecules like proteins. In hypergraphs
we have the important information in the hyperedges (interactions and dihedrals)
so it is needed to find a convolutional layer that uses the hyperedges features as a
discriminant to predict the output, not only as a weight to propagate the information
between nodes.

∆G prediction If we would like to consider a further extension of the applicability
of the model we might rethink the problem statement. The current NN goal is find-
ing the relative amount of free energy of a molecule’s conformation. Expanding and
generalizing the prediction on several molecules, by adding new simulations, will not
probably help in achieving meaningful results. This because each free energy value is
computed as a difference with the respective molecule’s global minimum. And even
though two global minimum of two different systems have the same amount of free
energy (i.e. 0), it doesn’t mean that their value comes from similar structural prop-
erties. Because the single free energy value is coupled to the system it is computed
based on its own structural features.

Moving the problem to a more general statement instead, could bring a different
perspective with additional outcomes. What if we try to predict the ∆G between
two same system’s conformations? The idea is to learn which are the conformational
changes that drives up or down the free energy value. Therefore what the network
may learn from multiple simulations is that similar changes in molecules bring similar
changes in the free energy. In this paradigm, the problem statement would become
computing the ∆G between 2 conformations c1 and c2 of the same system:

∆G = G(c1)−G(c2) (8.1)

Focusing on the ∆G, the NN will be able to predict the lower and higher states
of the system and reveal if passing from one conformation (c1) to another (c2) is
energetically favoured. In addition, its general applicability and ability to model

77

different systems (transfer learning) - molecules composed of a different number of
atoms - might be possible.

78

The implementation of the methods is open-source and available on GitHub at
https://github.com/limresgrp/free-energy-gnn

79

https://github.com/limresgrp/free-energy-gnn

Bibliography

[1] N.K. Broomhead and Soliman M.E. Can we rely on computational predictions to
correctly identify ligand binding sites on novel protein drug targets? assessment
of binding site prediction methods and a protocol for validation of predicted
binding sites. Cell. Biochem. Biophys., (75):15–23, 2017.

[2] Seonwoo Min, Byunghan Lee, and Sungroh Yoon. Deep learning in bioinfor-
matics. Briefings in Bioinformatics, (5), 2017.

[3] T.D. Pollard. A guide to simple and informative binding assays. Mol. Biol.
Cell., (21):4061–4067, 2010.

[4] Vittorio Limongelli. Ligand binding free energy and kinetics calculations in
2020. WIREs Comp. Mol. Science, (10), 2020.

[5] Frank Noe, Gianni De Fabritiis, and Cecilia Clementi. Machine learning for
protein folding and dynamics. Current Opinion in Structural Biology, 60, 2020.

[6] Hao Ding, Ichigaku Takigawa, Hiroshi Mamitsuka, and Shanfeng Zhu.
Similarity-based machine learning methods for predicting drug–target interac-
tions: a brief review. Briefings in bioinformatics, 15(5):734–747, 2014.

[7] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for
image classification: A comprehensive review. Neural computation, 29(9):2352–
2449, 2017.

[8] George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition. IEEE
Transactions on audio, speech, and language processing, 20(1):30–42, 2011.

[9] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521
(7553):436–444, 2015.

80

[10] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[11] Krzysztof J Geras, Stacey Wolfson, Yiqiu Shen, Nan Wu, S Kim, Eric Kim,
Laura Heacock, Ujas Parikh, Linda Moy, and Kyunghyun Cho. High-resolution
breast cancer screening with multi-view deep convolutional neural networks.
arXiv preprint arXiv:1703.07047, 2017.

[12] T Ciodaro, D Deva, JM De Seixas, and D Damazio. Online particle detection
with neural networks based on topological calorimetry information. In Journal
of physics: conference series, volume 368, page 012030. IOP Publishing, 2012.

[13] Vedran Dunjko and Hans J. Briegel. Machine learning & artificial intelligence
in the quantum domain, 2017.

[14] Andrea Grisafi, David M. Wilkins, Gábor Csányi, and Michele Ceriotti.
Symmetry-adapted machine learning for tensorial properties of atomistic sys-
tems. Physical Review Letters, 120(3), Jan 2018. ISSN 1079-7114. doi: 10.1103/
physrevlett.120.036002. URL http://dx.doi.org/10.1103/PhysRevLett.

120.036002.

[15] Louis-Fran çois Arsenault, Alejandro Lopez-Bezanilla, O. Anatole von Lilienfeld,
and Andrew J. Millis. Machine learning for many-body physics: The case of the
anderson impurity model. Phys. Rev. B, 90:155136, Oct 2014. doi: 10.1103/
PhysRevB.90.155136. URL https://link.aps.org/doi/10.1103/PhysRevB.

90.155136.

[16] Jörg Behler and Michele Parrinello. Generalized neural-network representa-
tion of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98:146401,
Apr 2007. doi: 10.1103/PhysRevLett.98.146401. URL https://link.aps.org/

doi/10.1103/PhysRevLett.98.146401.

[17] Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Müller, and Alexandre
Tkatchenko. Towards exact molecular dynamics simulations with machine-
learned force fields. Nature Communications, 9(1), Sep 2018. ISSN 2041-
1723. doi: 10.1038/s41467-018-06169-2. URL http://dx.doi.org/10.1038/

s41467-018-06169-2.

[18] James McCarty and Michele Parrinello. A variational conformational dynamics
approach to the selection of collective variables in metadynamics. The Journal

81

http://dx.doi.org/10.1103/PhysRevLett.120.036002
http://dx.doi.org/10.1103/PhysRevLett.120.036002
https://link.aps.org/doi/10.1103/PhysRevB.90.155136
https://link.aps.org/doi/10.1103/PhysRevB.90.155136
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1038/s41467-018-06169-2
http://dx.doi.org/10.1038/s41467-018-06169-2

of Chemical Physics, 147(20):204109, Nov 2017. ISSN 1089-7690. doi: 10.1063/
1.4998598. URL http://dx.doi.org/10.1063/1.4998598.

[19] Andreas Mardt, Luca Pasquali, Hao Wu, and Frank Noé. Vampnets: Deep
learning of molecular kinetics. Nature Communications, 9, 10 2017. doi: 10.
1038/s41467-017-02388-1.

[20] Luigi Bonati, Yue-Yu Zhang, and Michele Parrinello. Neural networks-based
variationally enhanced sampling. Proceedings of the National Academy of Sci-
ences, 116(36):17641–17647, 2019.

[21] Raimondas Galvelis and Yuji Sugita. Neural network and nearest neighbor
algorithms for enhancing sampling of molecular dynamics. Journal of Chemical
Theory and Computation, 13(6):2489–2500, 2017. doi: 10.1021/acs.jctc.7b00188.
URL https://doi.org/10.1021/acs.jctc.7b00188. PMID: 28437616.

[22] Protein structure. https://www.khanacademy.org/science/

biology/macromolecules/proteins-and-amino-acids/a/

orders-of-protein-structure. Accessed: 2020-06-14.

[23] Ron O. Dror Scott A. Hollingsworth. Molecular dynamics simulation for all.
Neuron, 2018. URL https://doi.org/10.1016/j.neuron.2018.08.011.

[24] Hiroshi Nakatsuji, Hiroyuki Nakashima, and Yusaku I. Kurokawa. Solving the
schrödinger equation of atoms and molecules: Chemical-formula theory, free-
complement chemical-formula theory, and intermediate variational theory. The
Journal of Chemical Physics, 149(11):114105, 2018. doi: 10.1063/1.5040376.
URL https://doi.org/10.1063/1.5040376.

[25] Lindahl, Abraham, Hess, and van der Spoel. Gromacs 2020.2 manual, April
2020. URL https://doi.org/10.5281/zenodo.3773799.

[26] Stefano Forli and Arthur J Olson. A force field with discrete displaceable wa-
ters and desolvation entropy for hydrated ligand docking. Journal of medicinal
chemistry, 55(2):623–638, 2012.

[27] Wolfgang Damm, Antonio Frontera, Julian Tirado-Rives, and William L Jor-
gensen. Opls all-atom force field for carbohydrates. Journal of Computational
Chemistry, 18(16):1955–1970, 1997.

82

http://dx.doi.org/10.1063/1.4998598
https://doi.org/10.1021/acs.jctc.7b00188
https://www.khanacademy.org/science/biology/macromolecules/proteins-and-amino-acids/a/orders-of-protein-structure
https://www.khanacademy.org/science/biology/macromolecules/proteins-and-amino-acids/a/orders-of-protein-structure
https://www.khanacademy.org/science/biology/macromolecules/proteins-and-amino-acids/a/orders-of-protein-structure
https://doi.org/10.1016/j.neuron.2018.08.011
https://doi.org/10.1063/1.5040376
https://doi.org/10.5281/zenodo.3773799

[28] Jing Huang and Alexander D MacKerell Jr. Charmm36 all-atom additive protein
force field: Validation based on comparison to nmr data. Journal of computa-
tional chemistry, 34(25):2135–2145, 2013.

[29] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M.Jr Merz, D.M. Ferguson,
D.C. Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman. A second generation
force field for the simulation of proteins, nucleic acids, and organic molecules.
J. Am. Chem. Soc., 117(19):5179–5197, 1995.

[30] Jacob N. Israelachvili. Van der waals forces in biological systems. Quarterly
Reviews of Biophysics, 6(4):341–387, 1973. doi: 10.1017/S0033583500001566.

[31] Van der waals interaction energy-distance. https://en.wikibooks.org/

wiki/Structural_Biochemistry/Chemical_Bonding/Van_der_Waals_

interaction. Accessed: 2020-06-11.

[32] Helmut Grubmüller, Helmut Heller, Andreas Windemuth, and Klaus Schulten.
Generalized verlet algorithm for efficient molecular dynamics simulations with
long-range interactions. Molecular Simulation, 6(1-3):121–142, 1991.

[33] Marco De Vivo, Matteo Masetti, Giovanni Bottegoni, and Andrea Cavalli. Role
of molecular dynamics and related methods in drug discovery. Journal of Medic-
inal Chemistry, 59(9):4035–4061, 2016. doi: 10.1021/acs.jmedchem.5b01684.
URL https://doi.org/10.1021/acs.jmedchem.5b01684. PMID: 26807648.

[34] Mikhail V Vener, AN Egorova, AV Churakov, and VG Tsirelson. Intermolecular
hydrogen bond energies in crystals evaluated using electron density properties:
Dft computations with periodic boundary conditions. Journal of Computational
Chemistry, 33(29):2303–2309, 2012.

[35] Jay W Ponder and Frederic M Richards. An efficient newton-like method for
molecular mechanics energy minimization of large molecules. Journal of Com-
putational Chemistry, 8(7):1016–1024, 1987.

[36] Basic principles of molecular dynamics (md) theory. http://web.archive.

org/web/20190712155444/http://www.archie-west.ac.uk/wp-content/

uploads/2012/06/MD_theory.pdf. Accessed: 2020-06-04.

[37] Josiah Willard Gibbs. Elementary principles in statistical mechanics: devel-
oped with especial reference to the rational foundations of thermodynamics. C.
Scribner’s sons, 1902.

83

https://en.wikibooks.org/wiki/Structural_Biochemistry/Chemical_Bonding/Van_der_Waals_interaction
https://en.wikibooks.org/wiki/Structural_Biochemistry/Chemical_Bonding/Van_der_Waals_interaction
https://en.wikibooks.org/wiki/Structural_Biochemistry/Chemical_Bonding/Van_der_Waals_interaction
https://doi.org/10.1021/acs.jmedchem.5b01684
http://web.archive.org/web/20190712155444/http://www.archie-west.ac.uk/wp-content/uploads/2012/06/MD_theory.pdf
http://web.archive.org/web/20190712155444/http://www.archie-west.ac.uk/wp-content/uploads/2012/06/MD_theory.pdf
http://web.archive.org/web/20190712155444/http://www.archie-west.ac.uk/wp-content/uploads/2012/06/MD_theory.pdf

[38] Molecular dynamics theory. https://embnet.vital-it.ch/MD_tutorial/

pages/MD.Part3.html. Accessed: 2020-07-05.

[39] David E Shaw, Martin M Deneroff, Ron O Dror, Jeffrey S Kuskin, Richard H
Larson, John K Salmon, Cliff Young, Brannon Batson, Kevin J Bowers, Jack C
Chao, et al. Anton, a special-purpose machine for molecular dynamics simula-
tion. ACM SIGARCH Computer Architecture News, 35(2):1–12, 2007.

[40] Chapter 6 - the second law of thermodynamics and entropy. In Bruce Fegley,
editor, Practical Chemical Thermodynamics for Geoscientists, pages 173 – 224.
Academic Press, Boston, 2013. ISBN 978-0-12-251100-4. doi: https://doi.org/
10.1016/B978-0-12-251100-4.00006-7. URL http://www.sciencedirect.com/

science/article/pii/B9780122511004000067.

[41] Daniel Vallero. Chapter 17 - air pollutant kinetics and transformation. In Daniel
Vallero, editor, Fundamentals of Air Pollution (Fifth Edition), pages 413 – 435.
Academic Press, Boston, fifth edition edition, 2014. ISBN 978-0-12-401733-7.
doi: https://doi.org/10.1016/B978-0-12-401733-7.00017-7. URL http://www.

sciencedirect.com/science/article/pii/B9780124017337000177.

[42] Kevin Leung, Susan B Rempe, and O Anatole von Lilienfeld. Ab initio molecular
dynamics calculations of ion hydration free energies. The Journal of chemical
physics, 130(20):204507, 2009.

[43] Vittorio Limongelli. Ligand binding free energy and kinetics calculation in
2020. WIREs Computational Molecular Science, 10(4):e1455, 2020. doi:
10.1002/wcms.1455. URL https://onlinelibrary.wiley.com/doi/abs/10.

1002/wcms.1455.

[44] Jorge Kurchan, Giorgio Parisi, and Miguel Angel Virasoro. Barriers and
metastable states as saddle points in the replica approach. Journal de Physique
I, 3(8):1819–1838, 1993.

[45] Alessandro Laio and Michele Parrinello. Escaping free-energy minima. Proceed-
ings of the National Academy of Sciences, 99(20):12562–12566, 2002.

[46] Mark Ebden. Gaussian processes: A quick introduction, 2015.

[47] DJ Tildesley and MP Allen. Computer simulation of liquids. clarendon, 1987.

84

https://embnet.vital-it.ch/MD_tutorial/pages/MD.Part3.html
https://embnet.vital-it.ch/MD_tutorial/pages/MD.Part3.html
http://www.sciencedirect.com/science/article/pii/B9780122511004000067
http://www.sciencedirect.com/science/article/pii/B9780122511004000067
http://www.sciencedirect.com/science/article/pii/B9780124017337000177
http://www.sciencedirect.com/science/article/pii/B9780124017337000177
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1455
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1455

[48] Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. Well-tempered
metadynamics: a smoothly converging and tunable free-energy method. Physical
review letters, 100(2):020603, 2008.

[49] James F Dama, Michele Parrinello, and Gregory A Voth. Well-tempered meta-
dynamics converges asymptotically. Physical review letters, 112(24):240602,
2014.

[50] Joannis Apostolakis, Philippe Ferrara, and Amedeo Caflisch. Calculation of
conformational transitions and barriers in solvated systems: Application to the
alanine dipeptide in water. The Journal of chemical physics, 110(4):2099–2108,
1999.

[51] Pratyush Tiwary and Michele Parrinello. A time-independent free energy esti-
mator for metadynamics. The Journal of Physical Chemistry B, 119(3):736–742,
2015. doi: 10.1021/jp504920s. URL https://doi.org/10.1021/jp504920s.
PMID: 25046020.

[52] Pratyush Tiwary and Michele Parrinello. From metadynamics to dynamics.
Physical review letters, 111(23):230602, 2013.

[53] Sho Sonoda and Noboru Murata. Neural network with unbounded activa-
tion functions is universal approximator. Applied and Computational Harmonic
Analysis, 43(2):233 – 268, 2017. ISSN 1063-5203. doi: https://doi.org/10.1016/
j.acha.2015.12.005. URL http://www.sciencedirect.com/science/article/

pii/S1063520315001748.

[54] Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):
1423–1447, 1999.

[55] A. Hoffmann. Artificial and natural computation. In Neil J. Smelser and
Paul B. Baltes, editors, International Encyclopedia of the Social Behavioral
Sciences, pages 777 – 783. Pergamon, Oxford, 2001. ISBN 978-0-08-043076-
8. doi: https://doi.org/10.1016/B0-08-043076-7/00551-9. URL http://www.

sciencedirect.com/science/article/pii/B0080430767005519.

[56] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

[57] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415, 2016.

85

https://doi.org/10.1021/jp504920s
http://www.sciencedirect.com/science/article/pii/S1063520315001748
http://www.sciencedirect.com/science/article/pii/S1063520315001748
http://www.sciencedirect.com/science/article/pii/B0080430767005519
http://www.sciencedirect.com/science/article/pii/B0080430767005519

[58] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[59] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2014.

[60] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from over-
fitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html.

[61] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

[62] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering. In Advances in
neural information processing systems, pages 3844–3852, 2016.

[63] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. A comprehensive survey on graph neural networks. IEEE Trans-
actions on Neural Networks and Learning Systems, 2020.

[64] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine, 34(4):18–42, 2017.

[65] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant
and equivariant graph networks, 2018.

[66] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on
graphs: Methods and applications, 2017.

[67] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering. In Advances in
neural information processing systems, pages 3844–3852, 2016.

[68] James Atwood and Don Towsley. Diffusion-convolutional neural networks. In
Advances in neural information processing systems, pages 1993–2001, 2016.

[69] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural message passing for quantum chemistry, 2017.

86

http://jmlr.org/papers/v15/srivastava14a.html

[70] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman
go neural: Higher-order graph neural networks, 2018.

[71] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[72] Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv
preprint arXiv:1905.10990, 2019.

[73] Ekagra Ranjan, Soumya Sanyal, and Partha Pratim Talukdar. Asap: Adaptive
structure aware pooling for learning hierarchical graph representations, 2019.

[74] Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64,
2007.

[75] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end
deep learning architecture for graph classification. In AAAI, 2018.

[76] Hongyang Gao and Shuiwang Ji. Graph u-nets, 2019.

[77] Huang CC Couch GS Greenblatt DM Meng EC Ferrin TE. Pettersen EF, God-
dard TD. Ucsf chimera–a visualization system for exploratory research and
analysis. J Comput Chem. 2004 Oct;25(13):1605-12. doi: 10.1002/jcc.20084.

[78] Pdb file format full documentation. http://www.wwpdb.org/documentation/

file-format-content/format33/v3.3.html. Accessed: 2020-06-13.

[79] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C.
Smith, Berk Hess, and Erik Lindahl. Gromacs: High performance molecu-
lar simulations through multi-level parallelism from laptops to supercomputers.
SoftwareX, 1-2:19 – 25, 2015. ISSN 2352-7110. doi: https://doi.org/10.1016/j.
softx.2015.06.001. URL http://www.sciencedirect.com/science/article/

pii/S2352711015000059.

[80] Lindahl, , Abraham, Hess, and Van Der Spoel. Gromacs 2019.4 source code,
2019. URL https://zenodo.org/record/3460414.

[81] Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker. An overview
of the amber biomolecular simulation package. WIREs Computational Molec-
ular Science, 3(2):198–210, 2013. doi: 10.1002/wcms.1121. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121.

87

http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://www.sciencedirect.com/science/article/pii/S2352711015000059
https://zenodo.org/record/3460414
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121

[82] Gareth A. Tribello, Massimiliano Bonomi, Davide Branduardi, Carlo Camil-
loni, and Giovanni Bussi. Plumed 2: New feathers for an old bird. Com-
puter Physics Communications, 185(2):604 – 613, 2014. ISSN 0010-4655. doi:
https://doi.org/10.1016/j.cpc.2013.09.018. URL http://www.sciencedirect.

com/science/article/pii/S0010465513003196.

[83] Kimberly C. B. New, Keith Watt, Charles W. Misner, and Joan M. Centrella.
Stable 3-level leapfrog integration in numerical relativity. Physical Review D,
58(6), Aug 1998. ISSN 1089-4918. doi: 10.1103/physrevd.58.064022. URL
http://dx.doi.org/10.1103/PhysRevD.58.064022.

[84] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R.
Haak. Molecular dynamics with coupling to an external bath. The Journal of
Chemical Physics, 81(8):3684–3690, 1984. doi: 10.1063/1.448118. URL https:

//doi.org/10.1063/1.448118.

[85] Ulrich Essmann, Lalith Perera, Max L Berkowitz, Tom Darden, Hsing Lee, and
Lee G Pedersen. A smooth particle mesh ewald method. The Journal of chemical
physics, 103(19):8577–8593, 1995.

[86] Lucas Sawle and Kingshuk Ghosh. Convergence of molecular dynamics simu-
lation of protein native states: Feasibility vs self-consistency dilemma. Jour-
nal of Chemical Theory and Computation, 12(2):861–869, 2016. doi: 10.1021/
acs.jctc.5b00999. URL https://doi.org/10.1021/acs.jctc.5b00999. PMID:
26765584.

[87] Omar Valsson, Pratyush Tiwary, and Michele Parrinello. Enhancing impor-
tant fluctuations: Rare events and metadynamics from a conceptual viewpoint.
Annual review of physical chemistry, 67:159–84, 2016.

[88] Sebastian Raschka. Biopandas: Working with molecular structures in pandas
dataframes. The Journal of Open Source Software, 2(14), jun 2017. doi: 10.
21105/joss.00279. URL http://dx.doi.org/10.21105/joss.00279.

[89] Wes McKinney. pandas: a foundational python library for data analysis and
statistics. Python for High Performance and Scientific Computing, 14, 2011.

[90] Song Bai, Feihu Zhang, and Philip H. S. Torr. Hypergraph convolution and
hypergraph attention. CoRR, abs/1901.08150, 2019. URL http://arxiv.org/

abs/1901.08150.

88

http://www.sciencedirect.com/science/article/pii/S0010465513003196
http://www.sciencedirect.com/science/article/pii/S0010465513003196
http://dx.doi.org/10.1103/PhysRevD.58.064022
https://doi.org/10.1063/1.448118
https://doi.org/10.1063/1.448118
https://doi.org/10.1021/acs.jctc.5b00999
http://dx.doi.org/10.21105/joss.00279
http://arxiv.org/abs/1901.08150
http://arxiv.org/abs/1901.08150

[91] Phillip EC Compeau, Pavel A Pevzner, and Glenn Tesler. How to apply de
bruijn graphs to genome assembly. Nature biotechnology, 29(11):987–991, 2011.

[92] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read
assembly using de bruijn graphs. Genome research, 18(5):821–829, 2008.

[93] N.G. Bruijn, de. A combinatorial problem. Proceedings of the Section of Sciences
of the Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam, 49
(7):758–764, 1946. ISSN 0370-0348.

[94] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery Data Mining, KDD ’19, page 2623–2631, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450362016. doi: 10.
1145/3292500.3330701. URL https://doi.org/10.1145/3292500.3330701.

[95] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chun-
fang Liu. A survey on deep transfer learning. In International conference on
artificial neural networks, pages 270–279. Springer, 2018.

[96] Nicolò Navarin, Dinh Van Tran, and Alessandro Sperduti. Universal readout for
graph convolutional neural networks. In 2019 International Joint Conference
on Neural Networks (IJCNN), pages 1–7. IEEE, 2019.

[97] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey,
2018.

89

https://doi.org/10.1145/3292500.3330701

	Introduction
	Importance and significance
	Background
	Preparatory notions

	Molecular Dynamics
	Molecular Dynamics fundamentals
	Preparing the simulation
	The production run

	Free energy
	MetaDynamics
	Well-tempered MetaDynamics

	Alanine Dipeptide

	Introduction to neural networks
	Neural network fundamentals
	Activation functions
	Loss functions
	Learning problem
	Optimization methods
	Classification and prediction tasks
	Overfitting problem

	Deep learning
	Convolutional Neural Networks

	Geometric Deep Learning
	Introduction to Graph Neural Networks
	Graph convolutional layers
	Spectral-based methods
	Spatial-based methods

	Graph pooling layers
	Graph readout layers

	Dataset
	Pipeline description
	Creating Alanine Dipeptide structure
	Protein Data Bank file format

	Well-tempered MetaDynamics simulation
	Alanine Dipeptide in vacuum

	Dataset creation

	Methods
	Molecular abstract representation
	Hypergraph
	Dihedrals overlap graph
	Simplified dihedrals overlap graph
	Angular value encoding

	Model architectures
	Flatten model
	Convolutions and pooling model

	Baseline models

	Results and discussions
	Alanine dipeptide FES prediction
	C&P final poolings
	Different number of training frames

	Comparison among different angular representations
	Comparison among different molecule representations
	Shuffling the nodes
	Prediction on unseen minima
	Prediction on both the representations

	Conclusions and future work
	Future work

